Ameliorative Effect of CaCl2 on Growth, Membrane Permeability and Nutrient Uptake in Oryza sativa Grown at High NaCl Salinity

Article Preview

Abstract:

A pot culture was carried out with Oryza sativa L. vari-Co-39, to investigate the effects of supplementary calcium chloride on plants grown at NaCl (50mM) concentration. Treatments were: (1) Control: nutrient solution alone (C); (2) nutrient solution plus 50mM sodium chloride (NaCl); (3) nutrient solution plus 10mM calcium chloride (CaCl2); (4) nutrient solution plus 15mM calcium chloride (CaCl2); (5) nutrient solution and 50 mM NaCl plus supplementary 10 mM CaCl2 (NaCl + CaCl2); and (6) 50 mM NaCl plus additional mixture of 15 mM CaCl2 in nutrient solution (NaCl + CaCl2). The plants grown under salt stress produced low dry weight and relative water content than those grown in standard nutrient solution and in CaCl2 alone. Supplemental calcium chloride added to nutrient solution containing salt significantly improved growth and relative water content. Membrane permeability increased with high NaCl application and these increases in root membrane permeability were decreased with supplementary Ca. The concentration of chloride (Cl) increases highly for all treatments. Sodium (Na) concentration in plant tissues increased in both shoots and roots at high NaCl treatment. Application of supplementary Ca lowered Na concentration. Concentrations of Ca. K and N were at deficient ranges in the plants grown at high NaCl levels and these deficiencies were corrected by supplementary Ca. The ameliorating effect of Ca on growth and physiological variables could reduce the negative effect of salinity of Oryza sativa L., plants.

Info:

Pages:

14-22

Citation:

Online since:

January 2014

Export:

Share:

Citation:

* - Corresponding Author

[1] Amuthavalli, P., D. Anbu, and S. Sivsankaramoorthy. (2012). Effect of calcium chloride on growth and biochemical constituents of cotton (Gossypium hirsutum L.), Int. J. Res. Bot., 2(3),9-12.

Google Scholar

[2] Arshi, A., M.Z. Abdin and M. Iqbal, 2006. Sennoside content and yield attributes of Cassia angustifolia Vahl. as affected by NaCl and CaCl2. Sci. Hortic., 111: 84-90.

DOI: 10.1016/j.scienta.2006.08.006

Google Scholar

[3] Arshi, A., M.Z. Abdin and M. Iqbal, 2010. Calcium interaction with salinity-induced effects on growth and metabolism of soybean (Glycine max L.), cultivars. J. Envi. Biol., 31 (5): 795-801.

Google Scholar

[4] Ashraf, M., N. Akhtar, 2004. Influence of salt stress on growth, ion accumulation and seed oil content in sweet fennel, Biol. Plant, 48 (3), 461-464.

DOI: 10.1023/b:biop.0000041105.89674.d1

Google Scholar

[5] Ben Amor, N., K. Ben Hamed, A. Debez, Grignon and C. Abdelly, 2005. Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci., 168: 889-899.Busch, D.S., 1995. Calcium regulation in plant cell and his role in signaling, Ann. Rev. Plant Physiol. 46: 95-102.

DOI: 10.1016/j.plantsci.2004.11.002

Google Scholar

[6] Cerda, A., Martinez, V., 1988. Nitrogen fertilization under saline conditions in tomato and cucumber plants. J. Hortic. Sci. 63, 451-458.

DOI: 10.1080/14620316.1988.11515878

Google Scholar

[7] Epstein, E. 1998. How calcium enhance plant salt tolerance, Science 40: 1906-1907.

Google Scholar

[8] Hua, J.M., X. Wang, F. Zhai, F. Yan, K. Feng, 2008. Effects of NaCl and Ca2+ on membrane potential of Epidermal cells of maize roots, Agri. Sci in China., 7(3): 291296.

DOI: 10.1016/s1671-2927(08)60068-1

Google Scholar

[9] Kaya, C., H. Kirnak, D. Higgs and K. Saltali, 2002. Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Sci. Hortic., 93: 65-74.

DOI: 10.1016/s0304-4238(01)00313-2

Google Scholar

[10] Koyro, H.W., 2006. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Env. Exp. Bot., 56: 136-146.

DOI: 10.1016/j.envexpbot.2005.02.001

Google Scholar

[11] Levent, A., K. Cengiz, A. Muhammad, A. Hakan, Y. Ibrahim, Y. Bulent, 2007. The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress, Envi. Exp. Bot., 59: 173-178.

DOI: 10.1016/j.envexpbot.2005.12.007

Google Scholar

[12] Luttes, S., J.M. Kiner, J. Bouharmont, 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 78: 389-398.

DOI: 10.1006/anbo.1996.0134

Google Scholar

[13] Maathuis, F.J.M., A. Amtmann, 1999. K+ nutrition and N+ toxicity: the basis of cellular K +N + ratios, Ann. Bot. 48: 123-133.

Google Scholar

[14] Mansour, M.M.F., 2000. Nitrogen containing compounds and adaptation of plant to salinity stress. Biol. Plant, 43(4): 491-500.

DOI: 10.1023/a:1002873531707

Google Scholar

[15] Mellgar, J.C., M. Benlloch and R. Fernandez-Escobar, 2006. Calcium increases sodium exclusion in olive plants. Sci. Horticul., 109: 303-305.

DOI: 10.1016/j.scienta.2006.04.013

Google Scholar

[16] Munns, R., 2002. Comparative physiology of salt and water stress, Plant Cell Env., 25: 239-250.

Google Scholar

[17] Munns, R., 2005, Genes and salt tolerance: bringing then together, New Phytol. 167: 645-663.

DOI: 10.1111/j.1469-8137.2005.01487.x

Google Scholar

[18] Murillo-Amador, B., H.G. Jones, C. Kaya, R.L. Aguilar, J.L. Garcia-Hemandez, E. Troyo-Dieguez, N.Y. Avila-serrano, E. Rueda-Puente, 2003. Effects of folia application of calcium nitrate on growth and physiological attributes of cowpea (Vigna unguiculara L. Walp.) grown under salt stress. Environ. Exp. Bot. 58: 188-196.

DOI: 10.1016/j.envexpbot.2005.08.003

Google Scholar

[19] Parida, A.K. and B. Das, 2005. Salt tolerance and salinity effects on plants: a review. Ecot. & Env. Safety, 60: 324-349.

DOI: 10.1016/j.ecoenv.2004.06.010

Google Scholar

[20] Qadir, M., S. Schubert, A. Ghafoor, G. Murtaza, 2001. Amelioration strategies for sodic soil: a review, Land Degrad. Dev. 12: 375-386.

DOI: 10.1002/ldr.458

Google Scholar

[21] Ramoliya, P.J., H.M. Patel, A.N. Pandey, 2004. Effect of salinization of soil on growth and macro- and micro-nutrient accumulation in seedlings of Salvadora persica (Salvadoraceae), Forest Ecol. Manag. 202: 181-193.

DOI: 10.1016/j.foreco.2004.07.020

Google Scholar

[22] Renault, S., 2005. Response of red-oiser dogwood (Cornus stolonifera) seedlings to sodium sulphate salinity: effects of supplemental calcium. Physiol. Plantarum, 123: 7581.

DOI: 10.1111/j.1399-3054.2005.00444.x

Google Scholar

[23] Rengel, Z. 1992. The role of calcium in salt toxicity. Plant Cell Environ.15: 625-632.

Google Scholar

[24] Ruiz, J.M., R.M. Rivero, P.C. Garcia, M. Baghour and L. Romero, 1999. Role of CaCl2 in nitrate assimilation in leaves and roots of tobacco plants (Nicotiana tabacum L.). Plant Sci., 141:107-115.

DOI: 10.1016/s0168-9452(98)00230-1

Google Scholar

[25] Schactman, D., W. Liu, 1999. Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants, Trends plant Sci, 4: 281-287.

DOI: 10.1016/s1360-1385(99)01428-4

Google Scholar

[26] Shannon, M.C., 1998. Adaption of plants to salinity, Adv. Agron. 60: 75-119.

Google Scholar

[27] Shen, Z., Shen, Q., Liang, Y., Liu, Y., 1994. Effect of nitrogen on the groth and photosynthetic activity of salt-stressed barley. J. Plant Nutr. 17, 787-789.

DOI: 10.1080/01904169409364767

Google Scholar

[28] Sibole, J.V., C. Cabot, C. Poschenrieder and J. Barcelo, 2003. Efficient leaf ion partitioning an overriding condition for abscissic acid-controlled stomata and leaf growth responses to NaCl salinization in two legumes. J. Exp. Bot., 54: 2111-2119.

DOI: 10.1093/jxb/erg231

Google Scholar

[29] Sivasankaramoorthy, S., 2013. Effect of NaCl salinity on germination, growth and photosynthetic pigments of (Cajanus cajan.L) Int. J. Res. Plant. Sci. 3(4) 68-71

Google Scholar

[30] Sivasankaramoorthy, S., 2013. Effect of salinity on sodium, potassium and proline content of Chickpea seedlings. Int .Res.J. Pharm., 4 (7) 147-150.

DOI: 10.7897/2230-8407.04732

Google Scholar

[31] Sivasankaramoorthy, S., 2013. Studies on the germination, growth and biochemical components of (Arachis hypogaea L.), Int. J. Res. Plant. Sci. 3(4) 64-67.

Google Scholar

[32] Tanveerul, H., A. Javaid, N. Shafqat, A. Rashid, 2009. Morpho-Physiological response of rice (Oryza sativa L.) varieties to salinity stress, Pak. J. Bot., 41(6): 2943-2956.

Google Scholar

[33] Tester, M. and R. Davenport, 2003. Na+ tolerance and Na + transport in higher plants. Ann. Bot., 91: 503-527.

DOI: 10.1093/aob/mcg058

Google Scholar

[34] Tuna, A.T., C. Kaya, M. Ashraf, H. Altunlu, I. Yokas, B. Yagmur, 2007. The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress, Environ. Exp. Bot, 59: 173-178.

DOI: 10.1016/j.envexpbot.2005.12.007

Google Scholar

[35] Weber, D.J., R. Ansari, B. Gul, M.A. Khan, 2007. Potential of halophytes as source of edible oil, J. Arid Environ. 68: 315-321.

DOI: 10.1016/j.jaridenv.2006.05.010

Google Scholar

[36] White, P.J., M.R. Broadley, 2003. Calcium in plants, Ann. Bot. 92: 487-511.

Google Scholar

[37] Winicov, I., 1998. New molecular approaches to improving salt tolerance in crop plants, Ann. Bot., 82: 703-710. ( Received 19 December 2013; accepted 24 December 2013 )

DOI: 10.1006/anbo.1998.0731

Google Scholar