[1]
Amuthavalli, P., D. Anbu, and S. Sivsankaramoorthy. (2012). Effect of calcium chloride on growth and biochemical constituents of cotton (Gossypium hirsutum L.), Int. J. Res. Bot., 2(3),9-12.
Google Scholar
[2]
Arshi, A., M.Z. Abdin and M. Iqbal, 2006. Sennoside content and yield attributes of Cassia angustifolia Vahl. as affected by NaCl and CaCl2. Sci. Hortic., 111: 84-90.
DOI: 10.1016/j.scienta.2006.08.006
Google Scholar
[3]
Arshi, A., M.Z. Abdin and M. Iqbal, 2010. Calcium interaction with salinity-induced effects on growth and metabolism of soybean (Glycine max L.), cultivars. J. Envi. Biol., 31 (5): 795-801.
Google Scholar
[4]
Ashraf, M., N. Akhtar, 2004. Influence of salt stress on growth, ion accumulation and seed oil content in sweet fennel, Biol. Plant, 48 (3), 461-464.
DOI: 10.1023/b:biop.0000041105.89674.d1
Google Scholar
[5]
Ben Amor, N., K. Ben Hamed, A. Debez, Grignon and C. Abdelly, 2005. Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci., 168: 889-899.Busch, D.S., 1995. Calcium regulation in plant cell and his role in signaling, Ann. Rev. Plant Physiol. 46: 95-102.
DOI: 10.1016/j.plantsci.2004.11.002
Google Scholar
[6]
Cerda, A., Martinez, V., 1988. Nitrogen fertilization under saline conditions in tomato and cucumber plants. J. Hortic. Sci. 63, 451-458.
DOI: 10.1080/14620316.1988.11515878
Google Scholar
[7]
Epstein, E. 1998. How calcium enhance plant salt tolerance, Science 40: 1906-1907.
Google Scholar
[8]
Hua, J.M., X. Wang, F. Zhai, F. Yan, K. Feng, 2008. Effects of NaCl and Ca2+ on membrane potential of Epidermal cells of maize roots, Agri. Sci in China., 7(3): 291296.
DOI: 10.1016/s1671-2927(08)60068-1
Google Scholar
[9]
Kaya, C., H. Kirnak, D. Higgs and K. Saltali, 2002. Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Sci. Hortic., 93: 65-74.
DOI: 10.1016/s0304-4238(01)00313-2
Google Scholar
[10]
Koyro, H.W., 2006. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Env. Exp. Bot., 56: 136-146.
DOI: 10.1016/j.envexpbot.2005.02.001
Google Scholar
[11]
Levent, A., K. Cengiz, A. Muhammad, A. Hakan, Y. Ibrahim, Y. Bulent, 2007. The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress, Envi. Exp. Bot., 59: 173-178.
DOI: 10.1016/j.envexpbot.2005.12.007
Google Scholar
[12]
Luttes, S., J.M. Kiner, J. Bouharmont, 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 78: 389-398.
DOI: 10.1006/anbo.1996.0134
Google Scholar
[13]
Maathuis, F.J.M., A. Amtmann, 1999. K+ nutrition and N+ toxicity: the basis of cellular K +N + ratios, Ann. Bot. 48: 123-133.
Google Scholar
[14]
Mansour, M.M.F., 2000. Nitrogen containing compounds and adaptation of plant to salinity stress. Biol. Plant, 43(4): 491-500.
DOI: 10.1023/a:1002873531707
Google Scholar
[15]
Mellgar, J.C., M. Benlloch and R. Fernandez-Escobar, 2006. Calcium increases sodium exclusion in olive plants. Sci. Horticul., 109: 303-305.
DOI: 10.1016/j.scienta.2006.04.013
Google Scholar
[16]
Munns, R., 2002. Comparative physiology of salt and water stress, Plant Cell Env., 25: 239-250.
Google Scholar
[17]
Munns, R., 2005, Genes and salt tolerance: bringing then together, New Phytol. 167: 645-663.
DOI: 10.1111/j.1469-8137.2005.01487.x
Google Scholar
[18]
Murillo-Amador, B., H.G. Jones, C. Kaya, R.L. Aguilar, J.L. Garcia-Hemandez, E. Troyo-Dieguez, N.Y. Avila-serrano, E. Rueda-Puente, 2003. Effects of folia application of calcium nitrate on growth and physiological attributes of cowpea (Vigna unguiculara L. Walp.) grown under salt stress. Environ. Exp. Bot. 58: 188-196.
DOI: 10.1016/j.envexpbot.2005.08.003
Google Scholar
[19]
Parida, A.K. and B. Das, 2005. Salt tolerance and salinity effects on plants: a review. Ecot. & Env. Safety, 60: 324-349.
DOI: 10.1016/j.ecoenv.2004.06.010
Google Scholar
[20]
Qadir, M., S. Schubert, A. Ghafoor, G. Murtaza, 2001. Amelioration strategies for sodic soil: a review, Land Degrad. Dev. 12: 375-386.
DOI: 10.1002/ldr.458
Google Scholar
[21]
Ramoliya, P.J., H.M. Patel, A.N. Pandey, 2004. Effect of salinization of soil on growth and macro- and micro-nutrient accumulation in seedlings of Salvadora persica (Salvadoraceae), Forest Ecol. Manag. 202: 181-193.
DOI: 10.1016/j.foreco.2004.07.020
Google Scholar
[22]
Renault, S., 2005. Response of red-oiser dogwood (Cornus stolonifera) seedlings to sodium sulphate salinity: effects of supplemental calcium. Physiol. Plantarum, 123: 7581.
DOI: 10.1111/j.1399-3054.2005.00444.x
Google Scholar
[23]
Rengel, Z. 1992. The role of calcium in salt toxicity. Plant Cell Environ.15: 625-632.
Google Scholar
[24]
Ruiz, J.M., R.M. Rivero, P.C. Garcia, M. Baghour and L. Romero, 1999. Role of CaCl2 in nitrate assimilation in leaves and roots of tobacco plants (Nicotiana tabacum L.). Plant Sci., 141:107-115.
DOI: 10.1016/s0168-9452(98)00230-1
Google Scholar
[25]
Schactman, D., W. Liu, 1999. Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants, Trends plant Sci, 4: 281-287.
DOI: 10.1016/s1360-1385(99)01428-4
Google Scholar
[26]
Shannon, M.C., 1998. Adaption of plants to salinity, Adv. Agron. 60: 75-119.
Google Scholar
[27]
Shen, Z., Shen, Q., Liang, Y., Liu, Y., 1994. Effect of nitrogen on the groth and photosynthetic activity of salt-stressed barley. J. Plant Nutr. 17, 787-789.
DOI: 10.1080/01904169409364767
Google Scholar
[28]
Sibole, J.V., C. Cabot, C. Poschenrieder and J. Barcelo, 2003. Efficient leaf ion partitioning an overriding condition for abscissic acid-controlled stomata and leaf growth responses to NaCl salinization in two legumes. J. Exp. Bot., 54: 2111-2119.
DOI: 10.1093/jxb/erg231
Google Scholar
[29]
Sivasankaramoorthy, S., 2013. Effect of NaCl salinity on germination, growth and photosynthetic pigments of (Cajanus cajan.L) Int. J. Res. Plant. Sci. 3(4) 68-71
Google Scholar
[30]
Sivasankaramoorthy, S., 2013. Effect of salinity on sodium, potassium and proline content of Chickpea seedlings. Int .Res.J. Pharm., 4 (7) 147-150.
DOI: 10.7897/2230-8407.04732
Google Scholar
[31]
Sivasankaramoorthy, S., 2013. Studies on the germination, growth and biochemical components of (Arachis hypogaea L.), Int. J. Res. Plant. Sci. 3(4) 64-67.
Google Scholar
[32]
Tanveerul, H., A. Javaid, N. Shafqat, A. Rashid, 2009. Morpho-Physiological response of rice (Oryza sativa L.) varieties to salinity stress, Pak. J. Bot., 41(6): 2943-2956.
Google Scholar
[33]
Tester, M. and R. Davenport, 2003. Na+ tolerance and Na + transport in higher plants. Ann. Bot., 91: 503-527.
DOI: 10.1093/aob/mcg058
Google Scholar
[34]
Tuna, A.T., C. Kaya, M. Ashraf, H. Altunlu, I. Yokas, B. Yagmur, 2007. The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress, Environ. Exp. Bot, 59: 173-178.
DOI: 10.1016/j.envexpbot.2005.12.007
Google Scholar
[35]
Weber, D.J., R. Ansari, B. Gul, M.A. Khan, 2007. Potential of halophytes as source of edible oil, J. Arid Environ. 68: 315-321.
DOI: 10.1016/j.jaridenv.2006.05.010
Google Scholar
[36]
White, P.J., M.R. Broadley, 2003. Calcium in plants, Ann. Bot. 92: 487-511.
Google Scholar
[37]
Winicov, I., 1998. New molecular approaches to improving salt tolerance in crop plants, Ann. Bot., 82: 703-710. ( Received 19 December 2013; accepted 24 December 2013 )
DOI: 10.1006/anbo.1998.0731
Google Scholar