[1]
S. Sasidharan et al., Extraction, Isolation and characterization of bioactive compounds from plants' extracts, Afr. J. Tradit. Complement. Altern. Med. 8 (2011) 1–10.
Google Scholar
[2]
J.S. Dickschat, Biosynthesis and function of secondary metabolites, Beilstein J. Org. Chem. 7 (2011) 1620–1621.
DOI: 10.3762/bjoc.7.190
Google Scholar
[3]
V. Lobo, Free radicals, antioxidants and functional foods: Impact on human health, Pharmacol. Rev. 4 (2010) 118–126.
Google Scholar
[4]
S.N. Bakal, S. Bereswill, M.M Heimesaat, Finding novel antibiotic substances from medicinal plants-antimicrobial properties of Nigella sativa directed against multidrug-resistant bacteria, Eur. J. Microbiol. Immunol. 7 (2017) 92–98.
DOI: 10.1556/1886.2017.00001
Google Scholar
[5]
K. Kuchkova, An efficient and straightforward method to new organic compounds: Homodrimane sesquiterpenoids with diazine units, Synlett. 24 (2013) 697–700.
DOI: 10.1055/s-0032-1318253
Google Scholar
[6]
T.-L. Han, R.D. Cannon, S.G. Villas-Bôas, The metabolic response of Candida albicans to farnesol under hyphae-inducing conditions, FEMS Yeast Res. 12 (2012) 879–889.
DOI: 10.1111/j.1567-1364.2012.00837.x
Google Scholar
[7]
M.S.A. Khan, M.M. Altaf, M. Sajid, Insights of phyto-compounds as antipathogenic agents: controlling strategies for inhibiting biofilms and quorum sensing in Candida albicans, in: M.S.A. Khan, I. Ahmad, D. Chattopadhayay (Eds.), New Look to Phytomedicine: Advancements in Herbal Products as Novel Drug Leads, Academic Press, Cambridge, Massachusetts, United States, 2019, p.367–389.
DOI: 10.1016/b978-0-12-814619-4.00014-8
Google Scholar
[8]
J.H. Lee et al., Farnesol inhibits tumor growth and enhances the anticancer effects of bortezomib in multiple myeloma xenograft mouse model through the modulation of STAT3 signaling pathway, Cancer Lett. 360 (2015) 280–293.
DOI: 10.1016/j.canlet.2015.02.024
Google Scholar
[9]
J.H. Joo, A.M. Jetten, Molecular mechanisms involved in farnesol-induced apoptosis, Cancer Lett. 287, (2010) 123–135.
DOI: 10.1016/j.canlet.2009.05.015
Google Scholar
[10]
F. Calzada et al., Antihyperglycemic activity of the leaves from Annona cherimola miller and rutin on alloxan-induced diabetic rats, Pharmacogn. Mag. 15 (2019) S5–S11.
DOI: 10.4103/0974-8490.199781
Google Scholar
[11]
L. Kromidas et al., Release of antimicrobial actives from microcapsules by the action of axillary bacteria, Int. J. Cosmet. Sci. 28 (2006) 103–108.
DOI: 10.1111/j.1467-2494.2006.00283.x
Google Scholar
[12]
C.P. Palanisamy et al., Antioxidant and antimicrobial activities of (6E, 10E)-2, 6, 24-trimethyl pentacosa-2, 6, 10-triene from Euclea crispa leaves, S. Afr. J. Bot. 124 (2019) 311–319.
DOI: 10.1016/j.sajb.2019.03.019
Google Scholar
[13]
C.P. Palanisamy, D. Kanakasabapathy, A.O.T. Ashafa, In vitro antioxidant potential of Euclea crispa (Thunb.) leaves extracts, Pharmacogn. Res. 10 (2018) 296–300.
DOI: 10.4103/pr.pr_123_17
Google Scholar
[14]
K.A. Alayande, C.H. Pohl, A.O.T. Ashafa, Assessment of antidiarrhoea properties of Euclea crispa (Thunb.) leaf extract and fractions, S. Afr. J. Bot. 103 (2016) 306.
DOI: 10.1016/j.sajb.2016.02.012
Google Scholar
[15]
K.A. Alayande, C.H. Pohl, A.O.T. Ashafa, Time-kill kinetics and biocidal effect of Eucleacrispa leaf extracts against microbial membrane, Asian. Pac. J. Trop. Dis. 10 (2017) 390–399.
DOI: 10.1016/j.apjtm.2017.03.022
Google Scholar
[16]
S. Magama et al., Antimicrobial properties of extracts from Eucleacrispa subsp. crispa (Ebenaceae) towards human pathogens, S. Afr. J. Bot. 69 (2003) 193–198.
DOI: 10.1016/s0254-6299(15)30345-8
Google Scholar
[17]
C.P. Palanisamy, A.O.T. Ashafa, Analysis of novel C-X-C chemokine receptor type 4 (CXCR4) inhibitors from hexane extract of Eucleacrispa (Thunb.) leaves by chemical fingerprint identification and molecular docking analysis, J. Young Pharm. 10 (2018) 173–177.
DOI: 10.5530/jyp.2018.10.39
Google Scholar
[18]
C.P. Palanisamy et al., Isolation, structural characterization and in silico drug-like properties prediction of bioactive compound from ethanolic extract of Cayratia trifolia (L.), Pharmacogn. Res. 7 (2015) 121–125.
DOI: 10.4103/0974-8490.147226
Google Scholar
[19]
M.S. Blois, Antioxidant determination by the use of stable free radicals, Nature 26 (1958) 1199–2000.
Google Scholar
[20]
D.C. Garratt, The quantitative analysis of drugs, 3rd ed., Chapman and Hall, London, UK, 1964, p.456–458.
Google Scholar
[21]
E. Kunchandy, M.N.A. Rao, Oxygen radical scavenging activity of curcumin, Int. J. Pharm. 58 (1990) 237–240.
DOI: 10.1016/0378-5173(90)90201-e
Google Scholar
[22]
M. Oyaizu, Studies on products of browning reactions: antioxidant activities of products of browning reaction prepared from glucose amine, Japanese J. Nutr. Diet. 44 (1986) 307–315.
DOI: 10.5264/eiyogakuzashi.44.307
Google Scholar
[23]
S. Sowmya et al., Comparative study on antioxidant activity of crude and alkaloid extracts of Hybanthus enneaspermus Linn F. Mull, Anal. Chem. Lett. 5 (2016) 291–299.
DOI: 10.1080/22297928.2015.1135076
Google Scholar
[24]
Bauer et al., Antibiotic susceptibility testing by a standardized single disk method, Am. J. Clin. Pathol. 45 (1966) 493–496.
Google Scholar
[25]
S. Vignesh, A. Raja, R.A. James, Marine drugs: Implication and future studies, Int. J. Pharmacol. 7 (2011) 22–30.
Google Scholar
[26]
S. Hussain et al., Current approaches toward production of secondary plant metabolites, J. Pharm. Bioallied Sci. 4 (2012) 10–20.
Google Scholar
[27]
C.P. Palanisamy et al., Identification of novel PPAR agonist from GC-MS analysis of ethanolic extract of Cayratiatrifolia (L.): a computational molecular simulation studies, J. Appl. Pharm. Sci. 4 (2014) 6–11.
Google Scholar
[28]
K. Rahman, Studies on free radicals, antioxidants, and co-factors, Clin. Interv. Aging 2 (2007) 219–236.
Google Scholar
[29]
J.M. Lu et al., Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems, J. Cell. Mol. Med. 14 (2010) 840–860.
Google Scholar
[30]
V.A. Hartwig et al., A novel procedure to measure the antioxidant capacity of yerba maté extracts, Ciênc. Tecnol. Aliment. 32 (2012) 126–133.
DOI: 10.1590/s0101-20612012005000022
Google Scholar
[31]
P. Nithya, C. Madhavi, Antioxidant activity of 3-arylidene-4-piperidones in the 1,1-diphenyl-2-picrylhydrazyl scavenging assay, J. Taibah Univ. Sci. 11 (2017) 40–45.
DOI: 10.1016/j.jtusci.2014.11.007
Google Scholar
[32]
C.P. Palanisamy et al., In vitro antioxidant activities and HPTLC analysis of ethanolic extract of Cayratiatrifolia (L.), Asian. Pac. J. Trop. Dis. 2 (2012) S952–S956.
Google Scholar
[33]
P. Pacher, J.S. Beckman, L. Liaudet, Nitric oxide and peroxynitrite in health and disease, Physiol. Rev. 87 (2007) 315–424.
DOI: 10.1152/physrev.00029.2006
Google Scholar
[34]
A. Phaniendra, D.B. Jestadi, L. Periyasamy, Free radicals: properties, sources, targets, and their implication in various diseases, Indian J. Clin.Biochem. 30 (2015) 11–26.
DOI: 10.1007/s12291-014-0446-0
Google Scholar
[35]
K.S. Bora, A. Sharma, Evaluation of antioxidant and free-radical scavenging potential of Artemisia absinthium, Pharm. Biol. 49 (2011) 1216–1223.
DOI: 10.3109/13880209.2011.578142
Google Scholar
[36]
K. Sowndhararajan, S.C. Kang, Free radical scavenging activity from different extracts of leaves of Bauhinia vahlii Wight & Arn, Saudi J. Biol. Sci. 20 (2013) 319–325.
DOI: 10.1016/j.sjbs.2012.12.005
Google Scholar
[37]
J.D.D. Tamokou et al., The antimicrobial activities of extract and compounds isolated from Brillantaisia lamium, Iran. J. Med. Sci. 36 (2011) 24–31.
Google Scholar
[38]
J.M. Hornby et al., Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol, Appl. Environ. Microbiol. 67 (2001) 2982–2992.
DOI: 10.1128/aem.67.7.2982-2992.2001
Google Scholar