Recent Progress in Monoaromatic Pollutants Removal from Groundwater through Bioremediation

Retracted:

Paper was withdrawn due to plagiarism

Article Preview

Abstract:

Monoaromatic pollutants such as benzene, toluene, ethylbenzene and mixture of xylenes are now considered as widespread contaminants of groundwater. In situ bioremediation under natural attenuation or enhanced remediation has been successfully used for removal of organic pollutants, including monoaromatic compounds, from groundwater. Results published indicate that in some sites, intrinsic bioremediation can reduce the monoaromatic compounds content of contaminated water to reach standard levels of potable water. However, engineering bioremediation is faster and more efficient. Also, studies have shown that enhanced anaerobic bioremediation can be applied for many BTEX contaminated groundwaters, as it is simple, applicable and economical. This paper reviews microbiology and metabolism of monoaromatic biodegradation and in situ bioremediation for BTEX removal from groundwater under aerobic and anaerobic conditions. It also discusses the factors affecting and limiting bioremediation processes and interactions between monoaromatic pollutants and other compounds during the remediation processes.

Info:

* - Corresponding Author

[1] Farhadian M., Duchez D., Vachelard C., Larroche C., Accurate quantitative determination of monoaromatic compounds for the monitoring of bioremediation processes. Bioresource Technology 100(1) (2009) 173-178.

DOI: 10.1016/j.biortech.2008.05.046

Google Scholar

[2] El-Naas M.H., Acio J.A., El Telib A.E., Aerobic biodegradation of BTEX: Progresses and Prospects. Journal of Environmental Chemical Engineering 2(2) (2014) 1104-1122.

DOI: 10.1016/j.jece.2014.04.009

Google Scholar

[3] Oya S., Valocchi A.J., Analytical approximation of biodegradation rate for in situ bioremediation of groundwater under ideal radial flow conditions. Journal of Contaminant Hydrology 31(3-4) (1998) 275-293.

DOI: 10.1016/s0169-7722(97)00066-1

Google Scholar

[4] Martínez S., Cuervo-López F.M., Gomez J., Toluene mineralization by denitrification in an up flow anaerobic sludge blanket (UASB) reactor. Bioresource Technology 98(9) (2007) 1717-1723.

DOI: 10.1016/j.biortech.2006.07.046

Google Scholar

[5] Mazzeo D.E.C., Matsumoto S.T., Levy C.E., de Angelis D.d.F., Marin-Morales M.A., Application of micronucleus test and comet assay to evaluate BTEX biodegradation. Chemosphere 90(3) (2013) 1030-1036.

DOI: 10.1016/j.chemosphere.2012.08.012

Google Scholar

[6] Vila J., Tauler M., Grifoll M., Bacterial PAH degradation in marine and terrestrial habitats. Current Opinion in Biotechnology 33(0) (2015) 95-102.

DOI: 10.1016/j.copbio.2015.01.006

Google Scholar

[7] Mesarch M.B., Nakatsu C.H., Nies L., Bench-scale and field-scale evaluation of catechol 2,3-dioxygenase specific primers for monitoring BTX bioremediation. Water Research 38(5) (2004) 1281-1288.

DOI: 10.1016/j.watres.2003.10.052

Google Scholar

[8] Xiong W., Mathies C., Bradshaw K., Carlson T., Tang K., Wang Y., Benzene removal by a novel modification of enhanced anaerobic biostimulation. Water Research 46(15) (2012) 4721-4731.

DOI: 10.1016/j.watres.2012.06.036

Google Scholar

[9] Farhadian M., Duchez D., Gaudet G., Larroche C., Biodegradation of toluene at high initial concentration in an organic-aqueous phase bioprocess with nitrate respiration. Process Biochemistry 45(11) (2010) 1758-1762.

DOI: 10.1016/j.procbio.2010.01.006

Google Scholar

[10] Nakhla G., Biokinetic modeling of in situ bioremediation of BTX compounds-impact of process variables and scaleup implications. Water Research 37(6) (2003) 1296-1307.

DOI: 10.1016/s0043-1354(02)00491-8

Google Scholar

[11] Seeger E.M., Kuschk P., Fazekas H., Grathwohl P., Kaestner M., Bioremediation of benzene-, MTBE- and ammonia-contaminated groundwater with pilot-scale constructed wetlands. Environmental Pollution 159(12) (2011) 3769-3776.

DOI: 10.1016/j.envpol.2011.07.019

Google Scholar

[12] Bai H.-J., Zhang Z.-M., Yang G.-E., Li B.-Z., Bioremediation of cadmium by growing Rhodobacter sphaeroides: Kinetic characteristic and mechanism studies. Bioresource Technology 99(16) (2008) 7716-7722.

DOI: 10.1016/j.biortech.2008.01.071

Google Scholar

[13] Balba M.T., Al-Awadhi N., Al-Daher R., Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. Journal of Microbiological Methods 32(2) (1998) 155-164.

DOI: 10.1016/s0167-7012(98)00020-7

Google Scholar

[14] Allard A.-S., Neilson A.H., Bioremediation of organic waste sites: A critical review of microbiological aspects. International Biodeterioration & Biodegradation 39(4) (1997) 253-285.

DOI: 10.1016/s0964-8305(97)00021-8

Google Scholar

[15] Zarlenga A., Fiori A., Stochastic Modelling of the Length of Steady Plumes Undergoing Bioremediation. Procedia Environmental Sciences 19(0) (2013) 633-642.

DOI: 10.1016/j.proenv.2013.06.072

Google Scholar

[16] Souza E.C., Vessoni-Penna T.C., de Souza Oliveira R.P., Biosurfactant-enhanced hydrocarbon bioremediation: An overview. International Biodeterioration & Biodegradation 89(0) (2014) 88-94.

DOI: 10.1016/j.ibiod.2014.01.007

Google Scholar

[17] Harrington R.R., Poulson S.R., Drever J.I., Colberg P.J.S., Kelly E.F., Carbon isotope systematics of monoaromatic hydrocarbons: vaporization and adsorption experiments. Organic Geochemistry 30(8, Part 1) (1999) 765-775.

DOI: 10.1016/s0146-6380(99)00059-5

Google Scholar

[18] Longoria A., Tinoco R., Vázquez-Duhalt R., Chloroperoxidase-mediated transformation of highly halogenated monoaromatic compounds. Chemosphere 72(3) (2008) 485-490.

DOI: 10.1016/j.chemosphere.2008.03.006

Google Scholar

[19] Lin C.-W., Wu C.-H., Tang C.-T., Chang S.-H., Novel oxygen-releasing immobilized cell beads for bioremediation of BTEX-contaminated water. Bioresource Technology 124(0) (2012) 45-51.

DOI: 10.1016/j.biortech.2012.07.099

Google Scholar

[20] Nzila A., Update on the cometabolism of organic pollutants by bacteria. Environmental Pollution 178(0) (2013) 474-482.

DOI: 10.1016/j.envpol.2013.03.042

Google Scholar

[21] Vasilyeva G.K., Strijakova E.R., Nikolaeva S.N., Lebedev A.T., Shea P.J., Dynamics of PCB removal and detoxification in historically contaminated soils amended with activated carbon. Environmental Pollution 158(3) (2010) 770-777.

DOI: 10.1016/j.envpol.2009.10.010

Google Scholar

[22] Sturman P.J., Stewart P.S., Cunningham A.B., Bouwer E.J., Wolfram J.H., Engineering scale-up of in situ bioremediation processes: a review. Journal of Contaminant Hydrology 19(3) (1995) 171-203.

DOI: 10.1016/0169-7722(95)00017-p

Google Scholar

[23] Pontes J., Mucha A.P., Santos H., Reis I., Bordalo A., Basto M.C., Bernabeu A., Almeida C.M.R., Potential of bioremediation for buried oil removal in beaches after an oil spill. Marine Pollution Bulletin 76(1-2) (2013) 258-265.

DOI: 10.1016/j.marpolbul.2013.08.029

Google Scholar

[24] Niven R.K., Ethanol in gasoline: environmental impacts and sustainability review article. Renewable and Sustainable Energy Reviews 9(6) (2005) 535-555.

DOI: 10.1016/j.rser.2004.06.003

Google Scholar

[25] Brame J.A., Hong S.W., Lee J., Lee S.-H., Alvarez P.J.J., Photocatalytic pre-treatment with food-grade TiO2 increases the bioavailability and bioremediation potential of weathered oil from the Deepwater Horizon oil spill in the Gulf of Mexico. Chemosphere 90(8) (2013) 2315-2319.

DOI: 10.1016/j.chemosphere.2012.10.009

Google Scholar

[26] Jeon C.O., Madsen E.L., In situ microbial metabolism of aromatic-hydrocarbon environmental pollutants. Current Opinion in Biotechnology 24(3) (2013) 474-481.

DOI: 10.1016/j.copbio.2012.09.001

Google Scholar

[27] Mandelbaum R.T., Shati M.R., Ronen D., In situ microcosms in aquifer bioremediation studies. FEMS Microbiology Reviews 20(3-4) (1997) 489-502.

DOI: 10.1111/j.1574-6976.1997.tb00332.x

Google Scholar

[28] Höhener P., Ponsin V., In situ vadose zone bioremediation. Current Opinion in Biotechnology 27(0) (2014) 1-7.

DOI: 10.1016/j.copbio.2013.08.018

Google Scholar

[29] Jin H.M., Choi E.J., Jeon C.O., Isolation of a BTEX-degrading bacterium, Janibacter sp. SB2, from a sea-tidal flat and optimization of biodegradation conditions. Bioresource Technology 145(0) (2013) 57-64.

DOI: 10.1016/j.biortech.2013.02.004

Google Scholar

[30] Zepeda A., Texier A.C., Razo-Flores E., Gomez J., Kinetic and metabolic study of benzene, toluene and m-xylene in nitrifying batch cultures. Water Research 40(8) (2006) 1643-1649.

DOI: 10.1016/j.watres.2006.02.012

Google Scholar

[31] Amor L., Kennes C., Veiga M.C., Kinetics of inhibition in the biodegradation of monoaromatic hydrocarbons in presence of heavy metals. Bioresource Technology 78(2) (2001) 181-185.

DOI: 10.1016/s0960-8524(00)00182-6

Google Scholar

[32] Ramos J.-L., Marqués S., van Dillewijn P., Espinosa-Urgel M., Segura A., Duque E., Krell T., Ramos-González M.-I., Bursakov S., Roca A. et al, Laboratory research aimed at closing the gaps in microbial bioremediation. Trends in Biotechnology 29(12) (2011) 641-647.

DOI: 10.1016/j.tibtech.2011.06.007

Google Scholar

[33] Rozkov A., Vassiljeva I., Kurvet M., Kahru A., Preis S., Kharchenko A., Krichevskaya M., Liiv M., Käärd A., Vilu R., Laboratory study of bioremediation of rocket fuel-polluted groundwater. Water Research 33(5) (1999) 1303-1313.

DOI: 10.1016/s0043-1354(98)00305-4

Google Scholar

[34] Farhadian M., Duchez D., Vachelard C., Larroche C., Monoaromatics removal from polluted water through bioreactors-A review. Water Research 42(6-7) (2008) 1325-1341.

DOI: 10.1016/j.watres.2007.10.021

Google Scholar

[35] Scow K.M., Hicks K.A., Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Current Opinion in Biotechnology 16(3) (2005) 246-253.

DOI: 10.1016/j.copbio.2005.03.009

Google Scholar

[36] Aleer S., Adetutu E.M., Weber J., Ball A.S., Juhasz A.L., Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils. Journal of Environmental Management 136(0) (2014) 27-36.

DOI: 10.1016/j.jenvman.2014.01.031

Google Scholar

[37] Schreiber M.E., Bahr J.M., Nitrate-enhanced bioremediation of BTEX-contaminated groundwater: parameter estimation from natural-gradient tracer experiments. Journal of Contaminant Hydrology 55(1-2) (2002) 29-56.

DOI: 10.1016/s0169-7722(01)00184-x

Google Scholar

[38] Morasch B., Höhener P., Hunkeler D., Evidence for in situ degradation of mono-and polyaromatic hydrocarbons in alluvial sediments based on microcosm experiments with 13C-labeled contaminants. Environmental Pollution 148(3) (2007) 739-748. ( Received 07 February 2015; accepted 15 February 2015 )

DOI: 10.1016/j.envpol.2007.01.029

Google Scholar