[1]
Farhadian M., Duchez D., Vachelard C., Larroche C., Accurate quantitative determination of monoaromatic compounds for the monitoring of bioremediation processes. Bioresource Technology 100(1) (2009) 173-178.
DOI: 10.1016/j.biortech.2008.05.046
Google Scholar
[2]
El-Naas M.H., Acio J.A., El Telib A.E., Aerobic biodegradation of BTEX: Progresses and Prospects. Journal of Environmental Chemical Engineering 2(2) (2014) 1104-1122.
DOI: 10.1016/j.jece.2014.04.009
Google Scholar
[3]
Oya S., Valocchi A.J., Analytical approximation of biodegradation rate for in situ bioremediation of groundwater under ideal radial flow conditions. Journal of Contaminant Hydrology 31(3-4) (1998) 275-293.
DOI: 10.1016/s0169-7722(97)00066-1
Google Scholar
[4]
Martínez S., Cuervo-López F.M., Gomez J., Toluene mineralization by denitrification in an up flow anaerobic sludge blanket (UASB) reactor. Bioresource Technology 98(9) (2007) 1717-1723.
DOI: 10.1016/j.biortech.2006.07.046
Google Scholar
[5]
Mazzeo D.E.C., Matsumoto S.T., Levy C.E., de Angelis D.d.F., Marin-Morales M.A., Application of micronucleus test and comet assay to evaluate BTEX biodegradation. Chemosphere 90(3) (2013) 1030-1036.
DOI: 10.1016/j.chemosphere.2012.08.012
Google Scholar
[6]
Vila J., Tauler M., Grifoll M., Bacterial PAH degradation in marine and terrestrial habitats. Current Opinion in Biotechnology 33(0) (2015) 95-102.
DOI: 10.1016/j.copbio.2015.01.006
Google Scholar
[7]
Mesarch M.B., Nakatsu C.H., Nies L., Bench-scale and field-scale evaluation of catechol 2,3-dioxygenase specific primers for monitoring BTX bioremediation. Water Research 38(5) (2004) 1281-1288.
DOI: 10.1016/j.watres.2003.10.052
Google Scholar
[8]
Xiong W., Mathies C., Bradshaw K., Carlson T., Tang K., Wang Y., Benzene removal by a novel modification of enhanced anaerobic biostimulation. Water Research 46(15) (2012) 4721-4731.
DOI: 10.1016/j.watres.2012.06.036
Google Scholar
[9]
Farhadian M., Duchez D., Gaudet G., Larroche C., Biodegradation of toluene at high initial concentration in an organic-aqueous phase bioprocess with nitrate respiration. Process Biochemistry 45(11) (2010) 1758-1762.
DOI: 10.1016/j.procbio.2010.01.006
Google Scholar
[10]
Nakhla G., Biokinetic modeling of in situ bioremediation of BTX compounds-impact of process variables and scaleup implications. Water Research 37(6) (2003) 1296-1307.
DOI: 10.1016/s0043-1354(02)00491-8
Google Scholar
[11]
Seeger E.M., Kuschk P., Fazekas H., Grathwohl P., Kaestner M., Bioremediation of benzene-, MTBE- and ammonia-contaminated groundwater with pilot-scale constructed wetlands. Environmental Pollution 159(12) (2011) 3769-3776.
DOI: 10.1016/j.envpol.2011.07.019
Google Scholar
[12]
Bai H.-J., Zhang Z.-M., Yang G.-E., Li B.-Z., Bioremediation of cadmium by growing Rhodobacter sphaeroides: Kinetic characteristic and mechanism studies. Bioresource Technology 99(16) (2008) 7716-7722.
DOI: 10.1016/j.biortech.2008.01.071
Google Scholar
[13]
Balba M.T., Al-Awadhi N., Al-Daher R., Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. Journal of Microbiological Methods 32(2) (1998) 155-164.
DOI: 10.1016/s0167-7012(98)00020-7
Google Scholar
[14]
Allard A.-S., Neilson A.H., Bioremediation of organic waste sites: A critical review of microbiological aspects. International Biodeterioration & Biodegradation 39(4) (1997) 253-285.
DOI: 10.1016/s0964-8305(97)00021-8
Google Scholar
[15]
Zarlenga A., Fiori A., Stochastic Modelling of the Length of Steady Plumes Undergoing Bioremediation. Procedia Environmental Sciences 19(0) (2013) 633-642.
DOI: 10.1016/j.proenv.2013.06.072
Google Scholar
[16]
Souza E.C., Vessoni-Penna T.C., de Souza Oliveira R.P., Biosurfactant-enhanced hydrocarbon bioremediation: An overview. International Biodeterioration & Biodegradation 89(0) (2014) 88-94.
DOI: 10.1016/j.ibiod.2014.01.007
Google Scholar
[17]
Harrington R.R., Poulson S.R., Drever J.I., Colberg P.J.S., Kelly E.F., Carbon isotope systematics of monoaromatic hydrocarbons: vaporization and adsorption experiments. Organic Geochemistry 30(8, Part 1) (1999) 765-775.
DOI: 10.1016/s0146-6380(99)00059-5
Google Scholar
[18]
Longoria A., Tinoco R., Vázquez-Duhalt R., Chloroperoxidase-mediated transformation of highly halogenated monoaromatic compounds. Chemosphere 72(3) (2008) 485-490.
DOI: 10.1016/j.chemosphere.2008.03.006
Google Scholar
[19]
Lin C.-W., Wu C.-H., Tang C.-T., Chang S.-H., Novel oxygen-releasing immobilized cell beads for bioremediation of BTEX-contaminated water. Bioresource Technology 124(0) (2012) 45-51.
DOI: 10.1016/j.biortech.2012.07.099
Google Scholar
[20]
Nzila A., Update on the cometabolism of organic pollutants by bacteria. Environmental Pollution 178(0) (2013) 474-482.
DOI: 10.1016/j.envpol.2013.03.042
Google Scholar
[21]
Vasilyeva G.K., Strijakova E.R., Nikolaeva S.N., Lebedev A.T., Shea P.J., Dynamics of PCB removal and detoxification in historically contaminated soils amended with activated carbon. Environmental Pollution 158(3) (2010) 770-777.
DOI: 10.1016/j.envpol.2009.10.010
Google Scholar
[22]
Sturman P.J., Stewart P.S., Cunningham A.B., Bouwer E.J., Wolfram J.H., Engineering scale-up of in situ bioremediation processes: a review. Journal of Contaminant Hydrology 19(3) (1995) 171-203.
DOI: 10.1016/0169-7722(95)00017-p
Google Scholar
[23]
Pontes J., Mucha A.P., Santos H., Reis I., Bordalo A., Basto M.C., Bernabeu A., Almeida C.M.R., Potential of bioremediation for buried oil removal in beaches after an oil spill. Marine Pollution Bulletin 76(1-2) (2013) 258-265.
DOI: 10.1016/j.marpolbul.2013.08.029
Google Scholar
[24]
Niven R.K., Ethanol in gasoline: environmental impacts and sustainability review article. Renewable and Sustainable Energy Reviews 9(6) (2005) 535-555.
DOI: 10.1016/j.rser.2004.06.003
Google Scholar
[25]
Brame J.A., Hong S.W., Lee J., Lee S.-H., Alvarez P.J.J., Photocatalytic pre-treatment with food-grade TiO2 increases the bioavailability and bioremediation potential of weathered oil from the Deepwater Horizon oil spill in the Gulf of Mexico. Chemosphere 90(8) (2013) 2315-2319.
DOI: 10.1016/j.chemosphere.2012.10.009
Google Scholar
[26]
Jeon C.O., Madsen E.L., In situ microbial metabolism of aromatic-hydrocarbon environmental pollutants. Current Opinion in Biotechnology 24(3) (2013) 474-481.
DOI: 10.1016/j.copbio.2012.09.001
Google Scholar
[27]
Mandelbaum R.T., Shati M.R., Ronen D., In situ microcosms in aquifer bioremediation studies. FEMS Microbiology Reviews 20(3-4) (1997) 489-502.
DOI: 10.1111/j.1574-6976.1997.tb00332.x
Google Scholar
[28]
Höhener P., Ponsin V., In situ vadose zone bioremediation. Current Opinion in Biotechnology 27(0) (2014) 1-7.
DOI: 10.1016/j.copbio.2013.08.018
Google Scholar
[29]
Jin H.M., Choi E.J., Jeon C.O., Isolation of a BTEX-degrading bacterium, Janibacter sp. SB2, from a sea-tidal flat and optimization of biodegradation conditions. Bioresource Technology 145(0) (2013) 57-64.
DOI: 10.1016/j.biortech.2013.02.004
Google Scholar
[30]
Zepeda A., Texier A.C., Razo-Flores E., Gomez J., Kinetic and metabolic study of benzene, toluene and m-xylene in nitrifying batch cultures. Water Research 40(8) (2006) 1643-1649.
DOI: 10.1016/j.watres.2006.02.012
Google Scholar
[31]
Amor L., Kennes C., Veiga M.C., Kinetics of inhibition in the biodegradation of monoaromatic hydrocarbons in presence of heavy metals. Bioresource Technology 78(2) (2001) 181-185.
DOI: 10.1016/s0960-8524(00)00182-6
Google Scholar
[32]
Ramos J.-L., Marqués S., van Dillewijn P., Espinosa-Urgel M., Segura A., Duque E., Krell T., Ramos-González M.-I., Bursakov S., Roca A. et al, Laboratory research aimed at closing the gaps in microbial bioremediation. Trends in Biotechnology 29(12) (2011) 641-647.
DOI: 10.1016/j.tibtech.2011.06.007
Google Scholar
[33]
Rozkov A., Vassiljeva I., Kurvet M., Kahru A., Preis S., Kharchenko A., Krichevskaya M., Liiv M., Käärd A., Vilu R., Laboratory study of bioremediation of rocket fuel-polluted groundwater. Water Research 33(5) (1999) 1303-1313.
DOI: 10.1016/s0043-1354(98)00305-4
Google Scholar
[34]
Farhadian M., Duchez D., Vachelard C., Larroche C., Monoaromatics removal from polluted water through bioreactors-A review. Water Research 42(6-7) (2008) 1325-1341.
DOI: 10.1016/j.watres.2007.10.021
Google Scholar
[35]
Scow K.M., Hicks K.A., Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Current Opinion in Biotechnology 16(3) (2005) 246-253.
DOI: 10.1016/j.copbio.2005.03.009
Google Scholar
[36]
Aleer S., Adetutu E.M., Weber J., Ball A.S., Juhasz A.L., Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils. Journal of Environmental Management 136(0) (2014) 27-36.
DOI: 10.1016/j.jenvman.2014.01.031
Google Scholar
[37]
Schreiber M.E., Bahr J.M., Nitrate-enhanced bioremediation of BTEX-contaminated groundwater: parameter estimation from natural-gradient tracer experiments. Journal of Contaminant Hydrology 55(1-2) (2002) 29-56.
DOI: 10.1016/s0169-7722(01)00184-x
Google Scholar
[38]
Morasch B., Höhener P., Hunkeler D., Evidence for in situ degradation of mono-and polyaromatic hydrocarbons in alluvial sediments based on microcosm experiments with 13C-labeled contaminants. Environmental Pollution 148(3) (2007) 739-748. ( Received 07 February 2015; accepted 15 February 2015 )
DOI: 10.1016/j.envpol.2007.01.029
Google Scholar