Molecular Aspects of Effect of Shiga Toxin in Humans - A Review

Article Preview

Abstract:

Shiga toxins belonging to a family of structurally and functionally related protein toxins serve as the key virulence factors for pathogenecity of the virulent enteric bacterial strains namely Shigella dysenteriae serotype 1 including Shiga toxin-producing Escherichia coli (STEC). S. dysenteriae type 1 isolates remain major public health concerns due to their widespread outbreaks and the severity of extra-intestinal diseases, including acute renal failure and also affects the central nervous system. Despite practicing improved hygienic conditions and regulating food and drinking water safety, the enteric pathogens are imposing a major threat in the well being of the human society. Shiga toxin on entry into host cells’ endoplasmic reticulum (ER) activates the stress response in ER and inhibits protein synthesis by catalytic inactivation of eukaryotic ribosomes. In many cell types shiga toxins trigger apoptosis. Recent studies have shown that shiga toxins induce autophagy which activates different signaling pathways in toxin-sensitive and toxin-resistant human cells. In this review the molecular basis of Shiga toxins’ effect on host cell leading to manifestation of the infection in affected individuals are discussed with an emphasis on recent findings.

Info:

Pages:

78-89

Citation:

Online since:

February 2015

Authors:

Export:

Share:

Citation:

* - Corresponding Author

[1] Allison H.E., Future Microbiol. 2(2007)165–174.

Google Scholar

[2] Alperi A., Figueras J., Clin Microbiol Infect 16 (2010) 1563–1567.

Google Scholar

[3] Asakura H., Makino S., Shirahata T., Tsukamoto T., Kurazono H., Ikeda T., Takeshi K., Microbiol Immunol 42 (1998) 815–822.

DOI: 10.1111/j.1348-0421.1998.tb02356.x

Google Scholar

[4] Bentancor A., Rumi M.V., Gentilini M.V., Sardoy C., Irino K., Agostini A., Cataldi A., FEMS Microbiol Lett 267 (2007) 251–256.

DOI: 10.1111/j.1574-6968.2006.00569.x

Google Scholar

[5] Bielaszewska M., et al., Lancet Infect Dis (2011) 11: 671–676.

Google Scholar

[6] Bielaszewska M., Idelevich E.A., Zhang W., Bauwens A., Schaumburg F., Mellmann A., Peters G., Karch H., Antimicrob Agents Chemother 56 (2012) 3277-3282.

DOI: 10.1128/aac.06315-11

Google Scholar

[7] Boerlin P., et al., J Clin Microbiol 37 (1999) 497–503.

Google Scholar

[8] Bopp D.J., Sauders B.D., Waring A.L., Ackelsberg J., Dumas N., Braun-Howland E., Dziewulski D., Wallace B.J., Kelly M., Halse T., et al., J Clin Microbiol 41 (2003) 174–180.

DOI: 10.1128/jcm.41.1.174-180.2003

Google Scholar

[9] Bridgwater F.A., Morgan R.S., Rowson K.E., Wright G.P., Br. J. Exp. Pathol 36 (1955) 447–453.

Google Scholar

[10] Brzuszkiewicz E., et al., Arch Microbiol 193 (2011) 883–891.

Google Scholar

[11] Buchholz U., et al., N Engl J Med 365 (2011) 1763–1770.

Google Scholar

[12] Carey C.M., Kostrzynska M., Ojha S., Thompson S., J Microbiol Methods 73 (2008)125-132.

Google Scholar

[13] Caprioli A., Morabito S., Brugere H., Oswald E., Vet Res 36 (2005) 289–311.

Google Scholar

[14] Casas V., Miyake J., Balsley H., Roark J., Telles S., Leeds S., Zurita I., Breitbart M., Bartlett D., Azam F., et al., FEMS Microbiol Lett 261 (2006) 141–149.

DOI: 10.1111/j.1574-6968.2006.00345.x

Google Scholar

[15] Cherla R.P., Lee S.Y., Tesh V.L., FEMS Microbiol. Lett 228 (2003) 159-166.

Google Scholar

[16] Cookson A.L., Taylor S.C., Attwood G.T., N Z Vet J 54 (2006) 28–33.

Google Scholar

[17] Corte's C., de la Fuente R., Blanco J., Blanco M., Blanco J.E., Dhabi G., Mora A., Justel P., Conteras A., Sanchez A., et al., Vet Microbiol. 110 (2005) 67–76.

DOI: 10.1016/j.vetmic.2005.06.009

Google Scholar

[18] Degnan P.H., Moran N.A., Appl. Environ. Microbiol 74 (2008) 6782–6791.

Google Scholar

[19] Donohue-Rolfe A., Keusch G.T., Infect. Immun 39 (1983) 270-274.

Google Scholar

[20] Duris J.W., Haack S.K., Fogarty L.R., J Environ Qual 38 (2009) 1878–1886.

Google Scholar

[21] Endo Y., Tsurugi K., Yutsudo T., Takeda Y., Ogasawara T., Igarashi K., Eur J Biochem 171 (1988) 45–50.

Google Scholar

[22] Fattah K.R., Mizutani S., Fattah F.J., Matsushiro A., Sugino Y., Genes Genet Syst 75 (2000) 223–232.

DOI: 10.1266/ggs.75.223

Google Scholar

[23] Feldman K.A., Mohle-Boetani J.C., Ward J., Furst K., Abbott S.L., Ferrero D.V., Olsen A.,Werner S.B., Public Health Rep 117 (2002) 380–385.

DOI: 10.1016/s0033-3549(04)50175-9

Google Scholar

[24] Ferens W., Hovde C.J., Foodborne Pathog Dis 8 (2011) 465–487.

Google Scholar

[25] Fernandez D., Rodriguez E.M., Arroyo G.H., Padola N.L., Parma A.E., J Appl Microbiol 106 (2009)1260–1267.

Google Scholar

[26] Fratamico P.M., Bhagwat A.A., Injaian L., Fedorka-Cray P.J., Foodborne Pathog Dis 5 (2008) 827–838.

DOI: 10.1089/fpd.2008.0147

Google Scholar

[27] Fraser M.E., Chernaia M.M., Kozlov Y.V., et al., Nat. Struct. Biol (1994) 59-64.

Google Scholar

[28] Fraser M.E., Fujinaga M,, Cherney M.M., Melton-Celsa A.R., Twiddy E.M., O'Brien A.D., James M.N.G., J. Biol. Chem 279 (2004) 27511–27517.

DOI: 10.1074/jbc.m401939200

Google Scholar

[29] Galiero G., Conedera G., Alfano D., Caprioli A., Vet Rec 156 (2005) 382–383.

Google Scholar

[30] Garred Ø., van Deurs B., Sandvig K.,. J. Biol. Chem 270 (1995) 10817–10821.

DOI: 10.1074/jbc.270.18.10817

Google Scholar

[31] Gilbreath J.J., Shields M.S., Smith R.L., Farrell L.D., Sheridan P.P., Spiegel K.M., Appl Environ Microbiol 75 (2009) 862–865.

DOI: 10.1128/aem.01158-08

Google Scholar

[32] Grotiuz G., Sirok A., Gadea P., Varela G., Schelotto F., J. Clin. Microbiol 44 (2006) 3838–3841.

DOI: 10.1128/jcm.00407-06

Google Scholar

[33] Gyles C.L., J. Anim. Sci 85 (2007) 45–62.

Google Scholar

[34] Halabi M., Orth D., Grif K., Wiesholzer-Pittl M., Kainz M., Schöberl J., Dierich M.P., Allerberger F., Würzner R., Int J Hyg Environ Health 11 (2008) 454–457.

DOI: 10.1016/j.ijheh.2007.08.002

Google Scholar

[35] Haque Q.M., Sugiyama A., Iwade Y., Midorikawa Y., Yamauchi T., Curr. Microbiol 32 (1996) 239–245.

Google Scholar

[36] Heuvelink A.E., Van Den Biggelaar F.L.A.M., De Boer E., Herbes R.G., Melchers W.J.G., Huis In'T Veld J.H.J., Monnens L.A.H., J Clin Microbiol 36 (1998) 878–882.

DOI: 10.1128/jcm.36.4.878-882.1998

Google Scholar

[37] Hughes L.A., Bennett M., Coffey P., Elliott J., Jones T.R., Jones R.C., Lahuerta-Marin A., McNiffe K., Norman D., Williams N.J., et al., Epidemiol Infect. 137 (2009) 1574–1582.

DOI: 10.1017/s0950268809002507

Google Scholar

[38] Hussein H.S., J Anim Sci 85 (2007) E63–E72.

Google Scholar

[39] Imamovic L., Balleste E., Jofre J., Muniesa M., Appl Environ Microbiol 76 (2010) 5693–5701.

Google Scholar

[40] Iordanov M.S., Pribnow D., Magun J.L., et al., Mol Cell Biol 17 (1997) 3373-3381.

Google Scholar

[41] Jackson M.P., Neill R.J., O'Brien A.D., Holmes R.K., Newland J.W., FEMS Microbiol Lett 44 (1987) 109–114.

Google Scholar

[42] Jansen A., Kielstein J.T., Euro Surveill 16 (2011).

Google Scholar

[43] Jenkins C., Pearce M.C., Chart H., Cheasty T., Willshaw G.A., Gunn G.J., Dougan G., Smith H.R., Synge B.A., Frankel G., J Appl Microbiol 93 (2002) 944–953.

DOI: 10.1046/j.1365-2672.2002.01771.x

Google Scholar

[44] Johannes L., Römer W., Nat Rev Microbiol. 8 (2010)105–116.

Google Scholar

[45] Kaplan B.S., Meyers K.E., Schulman S.L. J Am Soc Nephrol 9 (1998) 1126–1133.

Google Scholar

[46] Karmali M.A., Petric M., Lim C., Fleming P.C., Arbus G.S., Lior H., J Infect Dis 151 (1985) 775-782.

Google Scholar

[47] Karmali M.A., Steele B.T., Petric M., et al., Lancet 1 (1983) 619-620.

Google Scholar

[48] Kim Y.J., Kim J.H., Hur J., Lee J.H., Can J Vet Res 74 (2010) 59–64.

Google Scholar

[49] Konowalchuk J., Speirs J.I., Stavric S., Infect Immun 18 (1977) 775-779.

DOI: 10.1128/iai.18.3.775-779.1977

Google Scholar

[50] Leotta G.A., Deza N., Origlia J., Toma C., Chinen I., Miliwebsky E., Iyoda S., Sosa-Estani S., Rivas M., Vet Microbiol 118 (2006) 151–157.

DOI: 10.1016/j.vetmic.2006.07.006

Google Scholar

[51] Licence K., Oates K.R., Synge B.A., Reid T.M., Epidemiol Infect 126 (2001)135–138.

Google Scholar

[52] Lienemann T., Pitkänen T., Antikainen J., Mölsä E., Miettinen I., Haukka K., Vaara M., Siitonen A., Curr Microbiol 62 (2011) 1239–1244.

DOI: 10.1007/s00284-010-9832-x

Google Scholar

[53] Lingwood C.A., Binnington B., Manis A., Branch D.R., FEBS Lett 584 (2010) 1879–1886.

DOI: 10.1016/j.febslet.2009.11.089

Google Scholar

[54] Lord J.M., Roberts L.M., Lencer W.I., Curr Topics Microbiol Immunol 300 (2005) 149–168.

Google Scholar

[55] Loukiadis E., Kérourédan M., Beutin L., Oswald E., Brugère H., Appl Environ Microbiol 72 (2006) 3245–3251.

DOI: 10.1128/aem.72.5.3245-3251.2006

Google Scholar

[56] Louise C.B., Obrig T.G., Microvasc Res 47 (1994) 377-387.

Google Scholar

[57] Matz C., Kjelleberg S., Trends Microbiol 13 (2005) 302–307.

Google Scholar

[58] Mauro S.A., Koudelka G.B., Toxins 3 (2011) 608-625.

Google Scholar

[59] McCall B.J., Slinko V.G., Smith H.V., Heel K., Culleton T.H., Kelk V.R., Commun Dis Intell 34 (2010) 54–56.

Google Scholar

[60] McCarthy T.A., Barrett N.L., Hadler J.L., Salsbury B., Howard R.T., Dingman D.W., Brinkman C.D., Bibb W.F., Cartter M.L., Pediatrics 108 (2001) E59.

DOI: 10.1542/peds.108.4.e59

Google Scholar

[61] Mellmann A., et al., PLoS One 6 (2011) e22751.

Google Scholar

[62] Menrath A.,Wieler L.H., Heidemanns K., Semmler T., Fruth A., Kemper N., Gut Pathog 2 (2010) 7.

DOI: 10.1186/1757-4749-2-7

Google Scholar

[63] Moazzezy N., Oloomi M., Bouzari S., Int J Mol Cell Med Spring 3(2) (2014) 108-117.

Google Scholar

[64] Moore M.A., Blaser M.J., Perez-Perez G.I., O'Brien A.D., Microb Pathog 4 (1988) 455–462.

Google Scholar

[65] Muniesa M., Jofre J., García-Aljaro C., Blanch A.R., Environ Sci Technol 40(2006) 7141–7149.

DOI: 10.1021/es060927k

Google Scholar

[66] Muniesa M., Jofre J., FEMS Microbiol Lett 183 (2000) 197–200.

Google Scholar

[67] Nakagawa I., Nakata M., Kawabata S., Hamada S., Mol Microbiol 33 (1999) 1190–1199.

Google Scholar

[68] Obata F., Adv Appl Microbiol 71 (2010) 1–19.

Google Scholar

[69] O'Brien A.D., LaVeck G.D., Thompson M.R., Formal S.B., J Infect Dis 146 (1982)763–769.

Google Scholar

[70] O'Brien A.D., Tesh V.L., Donohue-Rolfe A., Jackson M.P., Olsnes S., Sandvig K., Lindberg A.A., Keusch G.T., Curr Top Microbiol Immunol 180(1992) 65–94.

DOI: 10.1007/978-3-642-77238-2_4

Google Scholar

[71] Oliveira M.G., Brito J.R., Carvalho R.R., Guth B.E., Gomes T.A., Vieira M.A., Kato M.A., Ramos II Vaz T.M., Irino K., Appl Environ Microbiol 73 (2007) 5945-5948.

DOI: 10.1128/aem.00929-07

Google Scholar

[72] Paton A.W., Paton J.C., J Clin Microbiol 34 (1996) 463–465.

Google Scholar

[73] Paunio M., Pebody R., Keskimäki M., Kokki M., Ruutu P., Oinonen S., Vuotari V., Siitonen A., Lahti E., Leinikki P., Epidemiol Infect 122 (1999) 1–5.

DOI: 10.1017/s0950268898001927

Google Scholar

[74] Perna N.T., Plunkett G III., Burland V., Mau B., Glasner J.D., Rose J.D., Mayhew G.F., Evans P.S., Gregor J., Kirkpatrick H.A., et al., Nature 409(2001) 529–533.

Google Scholar

[75] Petruzziello-Pellegrini T.N., Marsden P.A., Curr Opin Nephrol Hypertens 21 (2012) 433-440.

Google Scholar

[76] Petruzziello-Pellegrini T.N., Yuen D.A., Page A.V., Patel S., Soltyk A.M., Matouk C.C., Wong D.K., Turgeon P.J., Fish J.E., Ho J.J., et al., J Clin Invest 122 (2012) 759-776.

Google Scholar

[77] Petruzziello-Pellegrini T.N., Moslemi-Naeini M., Marsden P.A., Virulence 4 (6) (2013)556–563.

DOI: 10.4161/viru.26143

Google Scholar

[78] Phillips A.D., et al., Gut 47 (2000) 377–381.

Google Scholar

[79] Proulx F., Tesh V.L., Pediatric Critical Care Medicine: Basic Science and Clinical Evidence. London: Springer-Verlag (2007) 1198-1204.

Google Scholar

[80] Ram S., Vajpayee P., Shanker R., Environ Health Perspect 116 (2008) 448–452.

Google Scholar

[81] Ram S., Vajpayee P., Shanker R., Environ Sci Technol 41 (2007) 7383–7388.

Google Scholar

[82] Riley L.W., Remis R.S., Helgerson S.D., McGee H.B., Wells J.G., Davis B.R., Hebert R.J., Olcott E.S., Johnson L.M., Hargrett N.T., et al., New Engl J Med 308 (1983) 681–685.

DOI: 10.1056/nejm198303243081203

Google Scholar

[83] Rogerie F., Marecat A., Gambade S., Duponda F., Beauboisb P., Lange M., Int J Food Microbiol 63 (2001) 217–223.

Google Scholar

[84] Römer W., Berland L., Chambon V., Gaus K., Windschiegl B., Tenza D., et al., Nature 450 (2007) 670–675.

DOI: 10.1038/nature05996

Google Scholar

[85] Rosales A., Hofer J., Zimmerhackl L.B., Jungraithmayr T.C., Riedl M., Giner T., Strasak A., Orth-Höller D., Würzner R., Karch H., German-Austrian HUS Study Group., Clin Infect Dis 54 (2012) 1413-1421.

DOI: 10.1093/cid/cis196

Google Scholar

[86] Sánchez S,, García-Sánchez A,, Martínez R,, Blanco J,, Blanco J,E,, Blanco M,, Dahbi G., Mora A., Hermoso de Mendoza J., Alonso J.M., et al., Vet J 180 (2009) 384–388.

DOI: 10.1016/j.tvjl.2008.01.011

Google Scholar

[87] Sánchez S., Martínez R., García A., Vidal D., Blanco J., Blanco M., Blanco J.E., Mora A., Herrera-León S., Echeita A., et al., Vet. Microbiol 143 (2010) 420–423.

DOI: 10.1016/j.vetmic.2009.11.016

Google Scholar

[88] Sandvig K., Garred O., Prydz K., et al., Nature 358 (1992) 510-512.

Google Scholar

[89] Sandvig K., Bergan J., Dyve A.B., Skotland T., Torgersen M.L., Toxicon 56 (2010) 1181–1185.

DOI: 10.1016/j.toxicon.2009.11.021

Google Scholar

[90] Sato T., Shimizu T., Watarai M., Kobayashi M., Kano S., Hamabata T., Takeda Y., Yamasaki S., J Bacteriol 185 (2003) 3966–3971.

DOI: 10.1128/jb.185.13.3966-3971.2003

Google Scholar

[91] Scheiring J., Andreoli S.P., Zimmerhackl L.B., Pediatr Nephrol 23 (2008) 1749- 1760.

Google Scholar

[92] Schmidt H., Montag M., Bockemuhl J., Heesemann J., Karch H., Infec Immunol 61 (1993) 534–543.

Google Scholar

[93] Schüller S., Toxins 3 (2011) 626-639.

Google Scholar

[94] Siegler R.L., J Pediatr 1994. Vol. 125 (1994) 511-518.

Google Scholar

[95] Scotland S.M., Smith H.R., Rowe B., Lancet 2 (1985) 885–886.

Google Scholar

[96] Smith C.J., Olszewski A.M., Mauro S.A., Appl Environ Microbiol 75 (2009) 316–21.

Google Scholar

[97] Stein P.E., Boodhoo A., Tyrrell G.J., et al., Nature 355 (1992) 748-750.

Google Scholar

[98] Strockbine N.A., Jackson M.P., Sung L.M., Holmes R.K., O'Brien A.D., J Bacteriol Vol. 170 (1988) 1116–1122.

Google Scholar

[99] Strockbine N.A., Marques L.R., Newland J.W., Smith H.W., Holmes R.K., O'Brien A.D., Infect Immunol 53(1986) 135–140.

Google Scholar

[100] Swerdlow D.L., Woodruff B.A., Brady R.C., Griffin P.M., Tippen S., Donnell HDJr., Geldreich E., Payne B.J., Meyer AJr,. Wells J.G., et al., Ann Intern Med 117 (1992) 812–819.

DOI: 10.7326/0003-4819-117-10-812

Google Scholar

[101] Tam P.J., Lingwood C.A., Microbiology 153 (2007) 2700–2710.

Google Scholar

[102] Tarr P.I., Gordon C.A., Chandler W.L., Lancet 365 (2005) 1073-1086.

Google Scholar

[103] Tesh V.L., Future Microbiol 5 (2010) 431–453.

Google Scholar

[104] Trachtman H., Austin C., Lewinski M., Stahl R.A., Nat Rev Nephrol 8 (2012) 658-669.

Google Scholar

[105] Urdahl A.M., Beutin L., Skjerve E., Zimmermann S., Wasteson Y., J Appl Microbiol 95 (2003) 92–101.

Google Scholar

[106] Varma J.K., Greene K.D., Reller M.E., DeLong S.M., Trottier J., Nowicki S.F., DiOrio M., Koch E.M., Bannerman T.L., York S.T., et al., J Am Med Assoc 290 (2003) 2709–2712.

Google Scholar

[107] Vernon L.T., Cell Microbiol 14(1) (2012) 1-9.

Google Scholar

[108] Vu-Khac H., Cornick N.A., Vet Microbiol 126 (2008) 356–363.

Google Scholar

[109] Wani S.A., Samantha I., Munshi Z.H., Bhat M.A., Nishikawa Y., J Appl Microbiol 100 (2006) 108–113.

Google Scholar

[110] Walters S.P., Thebo A.L., Boehm A.B., Water Res 45 (2011) 1752–1762.

Google Scholar

[111] Yan Y., Shi Y., Cao D., Meng X., Xia L., Sun J., Curr Microbiol 62 (2011) 458–464.

Google Scholar

[112] Yatsuyanagi J., Saito S., Ito I., Jpn J Infect Dis 55 (2002) 174–176.

Google Scholar

[113] Zoja C., Buelli S., Morigi M., Pediatr Nephrol 25 (2010) 2231-2240. ( Received 08 February 2015; accepted 15 February 2015 )

DOI: 10.1007/s00467-010-1522-1

Google Scholar