Various Biochemical Changes of African Marigold Seedlings under Sugar Mill Effluent Stress

Article Preview

Abstract:

Sugar mill is one of the agro based industry and great significant in rural economy of developing countries. It creates environmental pollution by produced waste during sugar production. In the present work deals with the analysis of various change of biochemical in African marigold (Tagetes erecta L.) at 15 DAS under the different concentrations (control, 10, 25, 50, 75 and 100%) of sugar mill effluent. Results of this study determined that the lower concentration (10%) of sugar mill effluent increased photosynthetic pigment and biochemical contents of African marigold and it decreased at higher concentrations of the sugar mill effluent. The lower concentrations of sugar mill effluent used for irrigation.

Info:

Pages:

18-22

Citation:

Online since:

January 2016

Export:

Share:

Citation:

[1] Arnon, D. J., Plant Physiol. 24 (1949) 1-15.

Google Scholar

[2] Ayyasamy, P.M., R. Yasodha, S. Rajakumar, P. Lakshmanaperumalsamy, S. Rahman Lee, Inter. Bull. Environ. Contam. Toxi. 81 (2008) 449- 454.

DOI: 10.1007/s00128-008-9523-5

Google Scholar

[3] Barman, S.C., R.K. Sahu, S.K. Bhargava, C. Chatterjee, Bull. Environ. Contam. Toxicol., 64 (2000) 489–496.

Google Scholar

[4] Baskran, L., P. Sundaramoorthy, A.L.A. Chidambaram, K. Sankar Ganesh, Bot. Res. Int., 2 (2009) 107–114.

Google Scholar

[5] Chen, H.M., C.R. Zheng, C. Tu, Z.G. Shen, Journal of Chemosphere. 41(1-2) (2000) 229-234.

Google Scholar

[6] Desai, B.L., Indian Agricultural Research Institute, New Delhi, (1967).

Google Scholar

[7] Divyapriya, S., Dimi Divakaran, P.K. Deepthi, Int. J. Pharm. Pharm. Sci., 6(2) (2014) 538-542.

Google Scholar

[8] Doke, K.M., M.E. Khan, J. Rapolu, A. Shaikh, Ann. Environ. Sci., 5 (2011) 7‒11.

Google Scholar

[9] Hussain, I., M. Iqbal, M. Nawaz, R. Rasheed, A. Perveen, S. Mahmood, A. Yasmeen, A. Wahid, Int. J. Agric. Biol., 15 (2013) 1227–1235.

Google Scholar

[10] Jauybon, Z., Tech. J. Engin. App. Sci., 2 (2012) 7–10.

Google Scholar

[11] Kirk J. T. O., R. L. Allen, Biochem. Biophys. Res. Cann. 27 (1965) 523-530.

Google Scholar

[12] Kisku, G.C., S.C. Barman, S.K. Bhargava, Water Air Soil Pollut., 120 (2000) 121–137.

Google Scholar

[13] Kotteswari, M., S. Murugesan, World Journal of Pharmacy and Pharmaceutical Sciences, 3(6) (2014) 811-821.

Google Scholar

[14] Liu, J.N., Q.X. Zhou, X.F. Wang, Q.R. Zhang, T. Sun, Global Science Books, London, (2006) 245–252.

Google Scholar

[15] Lowry O. N., N. J. Roserbrough, A. L. Farr, R. J. Randell, J. Biol. Chem. 193 (1951) 265-275.

Google Scholar

[16] Ma, Y.L., Journal of Chang Chun University, 13 (2003) 21–29.

Google Scholar

[17] Maliwal, G.L., K.P. Patel, K.C. Patel, M.N. Patel, Pollution Research, 14 (2004) 231-238.

Google Scholar

[18] Moore S., W.H. Stein, J. Biol. Chem. (1948) 176-388.

Google Scholar

[19] Muthusamy P., S. Murugan, Manothi Smitha, ISCA Journal of Biological Sciences, 1(2) (2012) 7-11.

Google Scholar

[20] Mythili, K., B. Karthikeyan, Current Botany, 2(8) (2011) 40-45.

Google Scholar

[21] Nelson, N., Anal. Chem. 3 (1944) 426-428.

Google Scholar

[22] Pande, Y.N., Ecology and Environmental, 1(4) (2005) 39-42.

Google Scholar

[23] Saranraj, P., D. Stella, Int. J. Pharmaceut. Biol. Arch., 3 (2012) 1121–1128.

Google Scholar

[24] Shu, W.S., Z.H. Ye, C.Y. Lan, Z.Q. Zhang, M.H. Wong, Journal of Environmental Pollution. 120(2) (2002) 445–453.

Google Scholar

[25] Siva Santhi, K., R. Suja Pandian, Int. J. Pharm. Chem. Sci., 1 (2012) 804–806.

Google Scholar

[26] Suresh, B., K. Abraham, T. Damodharam, Adv. Appl. Sci. Res., 5(5) (2014) 305-309.

Google Scholar

[27] Tereschuk, M.L., M.V. Riera, G.R. Castro, L.R. Abdala, J. Ethnopharmacol. 56 (1997) 227–32.

Google Scholar

[28] Yildirim, E., A. G. Taylor and T.D. Spittler, Sci. Hort., 111 (2006) 1–6.

Google Scholar

[29] Zhou, Q.X., Journal of Environmental Chemistry, 25 (2006) 257–265.

Google Scholar