[1]
Ardelt, B.K.; Borowitz, J.L.; Isom, G.E.; (1989). Brain lipid peroxidation and antioxidant defence mechanisms following acute cyanide intoxication. Toxicol., 56, 147-54.
DOI: 10.1016/0300-483x(89)90129-7
Google Scholar
[2]
Begum, G. (2011). Organ-specific ATPase and phosphorylase enzyme activities in a food fish exposed to a carbamate insecticide and recovery response. Fish Physiology and Biochemistry, 37 (1), 61-69.
DOI: 10.1007/s10695-010-9417-4
Google Scholar
[3]
Cattell, R. B. (1996). The Screen Test for the number of Factors. Multivar. Behav. Res., 1, 245.
Google Scholar
[4]
Connell, D.; Lam, P.; Richardson, B.; Wu, R. (1999). Introduction to ecotoxicology. London press, p.170.
Google Scholar
[5]
Dreisenbach, R.H.; Robertson, W.O. (1987). Handbook of poisoning: prevention, diagnosis and treatment. 12th edition. Appleton and Lange, Norwalk, CT.
Google Scholar
[6]
Dube P.N.; Hosetti, B.B. (2010). Behaviour surveillance and oxygen consumption in the freshwater fish Labeo rohita (Hamilton) exposed to sodium cyanide. Biotechnology in Animal Husbandry, 26 (1-2), 91-103. http://dx.doi.org/2298/BAH1002091D
DOI: 10.2298/bah1002091d
Google Scholar
[7]
Finney, D.T. (1971). Probit Analysis. 3rd Ed. Cambridge University Press. London.
Google Scholar
[8]
Greer, J.J.; Jo, E. (1995). Effects of cyanide on neural mechanisms controlling breathing in neonatal rat in vivo. Neurotoxicology, 16, 211– 215.
Google Scholar
[9]
Grinwis, G.C.M.; Boonstra, A.; Vandenbrandhof, E.J.; Dormans, J.A.M.A.; Engelsma, M.; Kuiper, V.; Vanloveren, H.; Wester, P.W.; Vaal, M.A.; Vethaak, A.D.; VOS J.G. (1998) . Short-term toxicity of bis (tri-n-butyltin) oxide in flounder, Platichthys flesus, pathology and immune function. Aquatic Toxicology, 42: 15-36.
DOI: 10.1016/s0166-445x(97)00100-8
Google Scholar
[10]
Hartl, M.G.J.; Hutchinson, S.; Hawkins, L. (2001). Organotin and osmoregulation: quantifying the effects of environmental concentrations of sediment associated TBT and TPhT on the freshwater adapted European flounder, Platichthys flesus L. Journal of Experimental Marine Biology and Ecology, 256, 267-278.
DOI: 10.1016/s0022-0981(00)00320-8
Google Scholar
[11]
Heskett, J.E.; Loudon, J.B.; Reading, W.H.; Glen, A.M. (1978). The effect of lithium treatment on erythrocyte membrane ATPase activities and erythrocyte ion content. Britain Journal of Clinical Pharmacy, 5, 323–329.
DOI: 10.1111/j.1365-2125.1978.tb01715.x
Google Scholar
[12]
Holland, D.J. (1983). Cyanide poisoning: an uncommon encounter. J Emerg. Nurs., 9(3), 138.
Google Scholar
[13]
Isom, G.E.; Borowitz, J.L. (1995). Modification of cyanide toxico-dynamics: Mechanistic based antidote development. Toxicol Lett., 82/83,795-9.
DOI: 10.1016/0378-4274(95)03521-4
Google Scholar
[14]
Isom, G.E.; Borowitz, J.L.; Mukhopadhyay, S. (2010). Sulfurtransferase enzymes involved in cyanide metabolism. In: Charlene A.M, editor. Comprehensive Toxicology. Oxford: Elsevier. p.485–500
DOI: 10.1016/b978-0-08-046884-6.00423-1
Google Scholar
[15]
Jones, M.G.; Bickar, D.; Wilson, M.T.; Brunori , M.; Colosimo, A.; Sarti, P. (1984). A re-exanimation of the reactions of cyanide with cytochrome oxidase. Biochem J., 220, 56–66.
DOI: 10.1042/bj2200057
Google Scholar
[16]
Kadiri. O. (2015). Acute and Sub Lethal Effect of Potassium Cyanide on the Behaviour and ATPase Enzyme Activity in the Freshwater Fish, Clarias gariepinus (Catfish). International Letters of Natural Science, 49: 50-57. Doi: 10.18052/ www.scipress.com/ILNS.49.50
DOI: 10.56431/p-z75v02
Google Scholar
[17]
Moran, J.M.; Morgan, M.D.; Wiersma, D.; James, H. (1980). Introduction to environmental science, 2nd Edn. WH Freeman, New York, NY.
Google Scholar
[18]
OECD Guidelines for Testing of Chemicals (No.203; Adopted: 17th July, 1992).
Google Scholar
[19]
Okolie, N. P.; Audu, K. (2004). Correlation between cyanide- induced decreases in ocular Ca2+-ATPase and lenticular opacification. Journal of Biomedical Sciences, 3 (1),37-41.
DOI: 10.4314/jmbr.v3i1.10654
Google Scholar
[20]
Prashanth, M.S., H.A. Sayeswaraand and A.G. Mahesh 2011. Effect of Sodium Cyanide on Behaviour and Respiratory Surveillance in Freshwater Fish, Labeo Rohita (Hamilton). Recent Research in Science and Technology, 3(2), 24-30.
Google Scholar
[21]
Radhaiah, V.; Jayantha, R.K. (1988). Behavioural response of fish, Tilapia mossambica exposed to fenvalerate - Environmental Ecology, 6(2), 2-23.
Google Scholar
[22]
Ramzy, M.E. (2014). Toxicity and stability of sodium cyanide in fresh water fish Nile tilapia-Water Science 28, 42–50
DOI: 10.1016/j.wsj.2014.09.002
Google Scholar
[23]
Shwetha, A.; Praveen, N.B.; Hosetti, B.B. (2012). Effect of Exposure to Sublethal Concentrations of Zinc Cyanide on Tissue ATPase Activity in the Fresh Water Fish, Cirrhinus mrigala (Ham). Acta Zoologica Bulgarica, 64 (2), 185-190.
DOI: 10.2298/abs1201257d
Google Scholar
[24]
Shwetha, A.; Hosetti, B.B. (2009). Acute effects of zinc cyanide on the behaviour and oxygen consumption of the Indian major carp, Cirrhinus mrigala-World Journal of Zoology 4(3), 238-246.
Google Scholar
[25]
Solomonson, L.P. (1981). Cyanide as a metabolic inhibitor. In Cyanide in biology edited by B. Vennesland, E.E. Conn, C.J. Knowles, J. Westley and F. Wissing, San Diego, Academic Press, pp: 11-28.
Google Scholar
[26]
Tiwari, B.S.; Belenghi, B.; Levine, A. (2002). Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiology, 128, 1271–1281.
DOI: 10.1104/pp.010999
Google Scholar
[27]
Unnisa, Z.A.; Devaraj, N.S. (2007). Effect of methacrylo-nitrile on membrane bound enzymes of rat brain. Ind. J. Physiol. Pharmacol., 51(4), 405–409
Google Scholar