[1]
Rahimnejad, M., Ghoreyshi, A. A., Najafpour, G. D., Younesi, H. and Shakari, M. A Novel Microbial Fuel Cell Stack for Continuous Production of Clean Energy. International Journal of Hydrogen Energy, 37(2012) 5992-6000.
DOI: 10.1016/j.ijhydene.2011.12.154
Google Scholar
[2]
Logan, B. E., Cheng, S., Watson, V. and Estadt, G. Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells. Environmental Science Technology, 41(2007) 3341-3346.
DOI: 10.1021/es062644y
Google Scholar
[3]
Liu, H., Grot, S. and Logan, B. E. Electrochemically Assisted Microbial Production of Hydrogen from Acetate. Environmental Science Technology, 39(11) (2005) 4317-4320.
DOI: 10.1021/es050244p
Google Scholar
[4]
Min, B. and Logan, B. E. Continuous Electricity Generation from Domestic Wastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell. Environmental Science and Technology, 38(21) (2004) 5809-5814.
DOI: 10.1021/es0491026
Google Scholar
[5]
Logan B.E., Maxwell J. Wallack, Kyoung-Yeol Kim, Weihua He, Yujie Feng, and Pascal E. Saikaly Assessment of Microbial Fuel Cell Configurations and Power Densities. Environ. Sci. Technol. Lett., 2 (2015) 206−214.
DOI: 10.1021/acs.estlett.5b00180
Google Scholar
[6]
Liu, H., Ramnarayanan, R. and Logan, B. E. Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell. Environmental Science Technology. 38(7) (2004) 2281-2285.
DOI: 10.1021/es034923g
Google Scholar
[7]
Logan, B. E. Microbial Fuel Cells. 1st edition, John Wiley and Sons. Hoboken, New Jersey. (2008) pp.1-120.
Google Scholar
[8]
Wei, L., Han, H. and Shen, J. Effects of Cathodic Electron Acceptors and Potassium Ferricyanide Concentrations on the Performance of Microbial Fuel Cell. International Journal of Hydrogen Energy, 37(2012) 12980-12986.
DOI: 10.1016/j.ijhydene.2012.05.068
Google Scholar
[9]
Ghanapriya, K., Rana, S. and Kalaichalvan, P. T. Electricity Generation from Slaughterhouse Wastewater Using Microbial Fuel Cell Technology. Advanced Biotechnology, 11(9) (2012) 20-23.
Google Scholar
[10]
Momoh, O. L. Y. and Naeyor, B.. A Novel Electron Acceptor for Microbial Fuel Cells: Nature of Circuit Connection in Internal Resistance. Journal of Biochemistry and Technology, 2(4) (2010) 216-220.
Google Scholar
[11]
Min, B., Kim, J. R., Oh, S., Regan, J. M. and Logan, B. E. Electricity Generation from Swine Wastewater Using Microbial Fuel Cells. Water Research, 39(2005) 4961–4968.
DOI: 10.1016/j.watres.2005.09.039
Google Scholar
[12]
Cheesbrough, M. District Laboratory Practise in Tropical Countries Part 2. Cambridge University Press, Cambridge, United Kingdom. (2000) pp.38-219.
Google Scholar
[13]
Buchanan, R. E. and Gibbon, N. E. Bergey's Manual of Determinative Bacteriology. (8th ed.). The Williams and Wilkin's Co. Baltimore. (1984) pp.1246-1249.
Google Scholar
[14]
American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater (20th ed). American Public Health Association, Washington DC, USA. (1998) pp.4-30.
Google Scholar
[15]
Min, B., Cheng, S. and Logan, B. E.. Electricity Generation Using Membrane and Salt Bridge Microbial Fuel Cells. Water Research, 39(2005) 1675-1686.
DOI: 10.1016/j.watres.2005.02.002
Google Scholar
[16]
Adeleye S.A. and Okorondu S. I. Bioelectricity from students' hostel waste water using microbial fuel cell. Int. J. Biol. Chem. Sci. 9(2) (2015) 1038-1049.
DOI: 10.4314/ijbcs.v9i2.39
Google Scholar
[17]
Sajid A A, Nazish P, Thi H H, Mohammad O A and Moo H C. Fibrous polyaniline@manganese oxide nanocomposites as supercapacitor electrode materials and cathode catalysts for improved power production in microbial fuel cells. Phys. Chem. Chem. Phys., 18(2016) 9053-9060.
DOI: 10.1039/c6cp00159a
Google Scholar
[18]
Momoh, O. L. Y. and Naeyor, B. Generation of Electricity from Abattoir Wastewater with the Aid of a Relatively Cheap Source of Catholyte. Journal of Applied Science and Environmental Management, 14(2) (2010) 21-27.
DOI: 10.4314/jasem.v14i2.57828
Google Scholar
[19]
Elakkiya, E. and Matheswaran, M. Comparison of Anodic Metabolisms in Bioelectricity Production during Treatment of Dairy Wastewater in Microbial Fuel Cell. Bioresource Technology, 136(2013) 407–412.
DOI: 10.1016/j.biortech.2013.02.113
Google Scholar
[20]
Ghangrekar, M. M. and Shinde, V. B. Performance of membrane-Less Microbial Fuel Cell Treating Wastewater and Effect of Electrode Distance and Area on Electricity Production. Bioresource Technology, 98(15) (2007) 2879–2885.
DOI: 10.1016/j.biortech.2006.09.050
Google Scholar
[21]
Libin, Z., Lili, D., Chao, L., Ke, X. and Hongqiang, R. Effects of electrolyte total dissolved solids (TDS) on performance and anodic microbes of microbial fuel cells. African Journal of Biotechnology 10(74) (2011) 16909-16914
DOI: 10.5897/ajb11.1993
Google Scholar
[22]
Adesemoye, O. A., Opere, B. O. and Makinde, S. C. O. Microbial Content of Abattoir Wastewater and its Contaminated Soil in Lagos. African Journal of Biotechnology, 5(10) (2006) 1963-1968.
Google Scholar
[23]
Woodward, A. M. and Kell, D. B.. On the Relationship between the Nonlinear Dielectric Properties and Respiratory Activity of the Obligately Aerobic Bacterium Micrococcus luteus Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 321(3) (1991) 423-439.
DOI: 10.1016/0022-0728(91)85643-4
Google Scholar