Management of Sugar Industrial Wastes through Vermitechnology

Article Preview

Abstract:

The present paper discusses the role of earthworms in recycling of sugar industrial wastes. The wastes generated from sugar industry are pressmud, bagasse, bagasse fly ash, sugar cane trash, sugar beet mud, sugar beet pulp, molasses etc. These wastes when mixed with other organic substrates become ideal mixtures for growth of earthworms. These wastes if stored in open field’s causes contamination in the environment and may cause several diseases in public health. But the governments have been unable to tackle the menace of solid waste pollution due to dearth of appropriate technologies, finance and space. Therefore, environment friendly and cost effective technologies for nutrient recycling or remediation of wastes are being advocated as an alternative means for conserving and replenishing natural resources of the ecosystems. Vermicomposting is one such technology that synergises microbial degradation with earthworm’s activity for reducing, reusing and recycling waste materials in a shorter span of time. Earthworm technology can convert sugar industrial wastes into valuable fertilizing material. The final product (vermicompost) produced during the process of vermicomposting is nutrient rich organic fertilizer with plant available nutrients such as nitrogen, potassium, calcium and phosphorus. In the present study an attempt has been made to document the role of earthworms in reuse of sugar industry waste.

Info:

* - Corresponding Author

[1] P.J.M. Rao, Comparative performance of cane sugar industry in seven countries. Coop. Sugar. 37 (2005) 49-52.

Google Scholar

[2] S.A. Bhat, J. Singh, A.P. Vig, Genotoxic assessment and optimization of pressmud with the help of exotic earthworm Eisenia fetida. Environ. Sci. Pollut. Res. 21 (2014) 8112-8123.

DOI: 10.1007/s11356-014-2758-2

Google Scholar

[3] S.A. Bhat, J. Singh, A.P. Vig, Potential utilization of bagasse as feed material for earthworm Eisenia fetida and production of vermicompost. Springerplus. 4 (2015) 11.

DOI: 10.1186/s40064-014-0780-y

Google Scholar

[4] S.A. Bhat, J. Singh, A.P. Vig, Vermistabilization of sugar beet (Beta vulgaris L) waste produced from sugar factory using earthworm Eisenia fetida: Genotoxic assessment by Allium cepa test. Environ. Sci. Pollut. Res. 22 (2015) 11236-11254.

DOI: 10.1007/s11356-015-4302-4

Google Scholar

[5] M. Balakrishnan, V.S. Batra, Valorization of solid waste in sugar factories with possible application in India: A review. J Environ. Manage. 92 (2011) 2886-2891.

DOI: 10.1016/j.jenvman.2011.06.039

Google Scholar

[6] R.L. Yadav, S. Solomon, Potential of developing sugarcane by-products based industries in India. Sugar Tech. 8 (2006) 104-111.

DOI: 10.1007/bf02943642

Google Scholar

[7] B. Sen, T.S. Chandra, Chemolytic and solid-state spectroscopic evaluation of organic matter transformation during vermicomposting of sugar industry wastes. Bioresour. Technol. 98 (2007) 1680-1683.

DOI: 10.1016/j.biortech.2006.06.007

Google Scholar

[8] S. Ezhumalai, V. Thangavelu, Kinetic and optimization studies on the bioconversion of lignocellulosic material into ethanol. Bioresources. 5 (2010) 1879-1894.

Google Scholar

[9] J.A. Pessoa, I.M. de Manchilha, S. Sato, Evaluation of sugar cane hemicellulose hydrolyzate for cultivation of yeasts and filamentous fungi. J. Ind. Microbiol. Biot. 18 (1997) 360-363.

DOI: 10.1038/sj.jim.2900403

Google Scholar

[10] V.M. Dronnet, C.M.G.C. Renard, M.A.V. Axelos, J.F. Thibault, Binding of divalent metal cations by sugar-beet pulp. Carbohyd. Polym. 34 (1997) 73-82.

DOI: 10.1016/s0144-8617(97)00055-6

Google Scholar

[11] C. Gerente, P. Couespel du Mesnil, Y. Andres, J.F. Thibault, P. Le Cloirec, Removal of metal ions from aqueous solution on low cost natural polysaccharides-sorption mechanism approach. React. Funct. Polym. 46 (2000) 135-144.

DOI: 10.1016/s1381-5148(00)00047-x

Google Scholar

[12] M. Khwairakpam, R. Bhargava, Bioconversion of filter mud using vermicomposting employing two exotic and one local earthworm species. Bioresour. Technol. 100 (2009) 5846–5852.

DOI: 10.1016/j.biortech.2009.06.038

Google Scholar

[13] S.L. Lim, T.Y. Wu, P.N. Lim, K.P.Y. Shak, The use of vermicompost in organic farming: overview, effects on soil and economics. J. Sci. Food Agric. 95 (2015) 1143-1156.

DOI: 10.1002/jsfa.6849

Google Scholar

[14] S.A. Bhat, J. Singh, A.P. Vig, Vermiremediation of dyeing sludge from textile mill with the help of exotic earthworm Eisenia fetida Savigny. Environ. Sci. Pollut. Res. 20 (2013) 5975-5982.

DOI: 10.1007/s11356-013-1612-2

Google Scholar

[15] P.N. Lim, T.Y. Wu, C. Clarke, N.N. Nik Daud, A potential bioconversion of empty fruit bunches into organic fertilizer using Eudrilus eugeniae. Int. J. Environ. Sci. Technol. 2 (2015) 2533–2544.

DOI: 10.1007/s13762-014-0648-2

Google Scholar

[16] K.S. Reddy, M.V. Shantaram, Potentiality of earthworms in composting of sugarcane by products. Asian J. Microbiol. Biotechnol. Environ. Sci. 7 (2005) 483–487.

Google Scholar

[17] K. Parthasarathi, Aging of Press mud vermicast of Lampito mauritti (Kinberg) and Eudrilus eugeniae (Kinberg) - Reduction in microbial population and activity. J. Environ. Biol. 27 (2006) 221-223.

DOI: 10.1007/s003740050014

Google Scholar

[18] P. Sangwan, C.P. Kaushik, V.K. Garg, Feasibility of utilization of horse dung spiked filter cake in vermicomposters using exotic earthworm Eisenia foetida. Bioresour. Technol. 99 (2008) 2442–2448.

DOI: 10.1016/j.biortech.2007.04.061

Google Scholar

[19] P. Sangwan, C.P. Kaushik, V.K. Garg, Vermiconversion of industrial sludge for recycling the nutrients. Bioresour. Technol. 99 (2008) 8699–8704.

DOI: 10.1016/j.biortech.2008.04.022

Google Scholar

[20] M. Prakash, N. Karmegam, Vermistabilization of pressmud using Perionyx ceylanensis Mich. Bioresour. Technol. 101 (2010) 8464–8468.

DOI: 10.1016/j.biortech.2010.06.002

Google Scholar

[21] R. Kumar, D. Verma, B. L. Singh, U. Kumar, Shweta, Composting of sugar-cane waste by-products through treatment with microorganisms and subsequent vermicomposting. Bioresour. Technol. 101 (2010) 6707–6711.

DOI: 10.1016/j.biortech.2010.03.111

Google Scholar

[22] P. Sangwan, C.P. Kaushik, V.K. Garg, Vermicomposting of sugar industry waste (pressmud) mixed with cow dung employing an epigeic earthworm Eisenia foetida. Waste Manage. Res. 28 (2010) 71–75.

DOI: 10.1177/0734242x09336315

Google Scholar

[23] M. Honarvar, S. Samavat, M.H. Davoodi, K.H. Karimi, Possibility of producing compost and vermicompost from sugar beet waste in the sugar factory. J. Food Technol. Nutr. 8 (2011) 46-53.

Google Scholar

[24] J.M. Cynthia, K.T. Rajeshkumar, A study on sustainable utility of sugar mill effulent to vermicompost. Adv. Appl. Sci. Res. 3 (2012) 1092–1097.

Google Scholar

[25] N.P. Pandit, S.K. Maheshwaria, Optimization of vermicomposting technique for sugarcane waste management by using Eisenia fetida. Int. J. Biosci. 10 (2012) 143-155.

Google Scholar

[26] R. Niyazi, S. Chaurasia, Vermistabilization of fly ash amended with pressmud by employing eisenia foetida. Int. J. Pharm. Chem. Biol. Sci. 4 (2014) 85-95.

Google Scholar

[27] N.P. Pandit, S.K. Maheshwaria, Vermiremediation of sugarcane by-products into nutrient rich vermicompost through enhancing the bioconversion efficiency of Eisenia fetida by developing vermireactors. J. Bioprocess Technol. 99 (2014) 327-337.

Google Scholar

[28] R.U. Shah, M. Abid, M.F. Qayyum, R. Ullah, Dynamics of chemical changes through production of various composts/vermicompost such as farm manure and sugar industry wastes. Int. J. Recycl. Org. Waste Agricult. 4 (2015) 39–51.

DOI: 10.1007/s40093-015-0083-5

Google Scholar

[29] R.M. Venkatesh, T. Eevera, Mass reduction and recovery of nutrients through vermicomposting of fly ash. Appl Ecol Environ Res 6 (2008) 77-84.

DOI: 10.15666/aeer/0601_077084

Google Scholar

[30] V.K. Garg, R. Gupta, A. Yadav, Potential of Vermicomposting technology in solid waste management. In: Pandey A et al (ed) Current developments in solid state fermentation. Asia-Tech. Publishers Inc., New Delhi, (2007) pp.468-511.

DOI: 10.1007/978-0-387-75213-6_20

Google Scholar

[31] S.S. Lim, J.W. Jung, W.J. Choi, H.M. Ro HM, Substrate quality effects on decomposition of three livestock manure composts with similar stability degree in an acid loamy soil. Korean J. Soil Sci. Fert. 44 (2011) 527-533.

DOI: 10.7745/kjssf.2011.44.4.527

Google Scholar

[32] N. Senesi, Composted materials as organic fertilizers. Sci. Total Env. 81 (1989) 521-524.

Google Scholar

[33] J. Singh, A. Kaur, A.P. Vig, P.J. Rup PJ, Role of Eisenia fetida in rapid recycling of nutrients from bio sludge of beverage industry. Ecotoxicol. Environ. Saf. 73 (2010) 430-435.

DOI: 10.1016/j.ecoenv.2009.08.019

Google Scholar

[34] K. Parthasarathi, Influence of moisture on the activity of Perionyx excavatus (Perrier) and microbial–nutrient dynamics of pressmud vermicompost. Iran. J. Environ. Health Sci. Eng. 4 (2007) 147-156.

Google Scholar

[35] S. Suthar, Pilot-scale vermireactors for sewage sludge stabilization and metal remediation process: comparison with small-scale vermireactors. Ecol. Eng. 36 (2010) 703–712.

DOI: 10.1016/j.ecoleng.2009.12.016

Google Scholar

[36] T.C. Loh, Y.C. Lee, J.B. Liang, D. Tan, Vermicomposting of cattle and goat manures by Eisenia foetida and their growth and reproduction preference. Bioresour. Technol. 96 (2005) 111-114.

DOI: 10.1016/j.biortech.2003.03.001

Google Scholar

[37] C.A. Edwards, Breakdown of animal, vegetable and industrial organic wastes by earthworms; In CA Edwards and EP Neuhauser (eds), Earthworms in Waste and Environmental Management. SPB Academic Publishing, The Hague, the Netherlands. (1988) pp.21-31.

Google Scholar

[38] S. Suthar, Potential utilization of Guar gum industrial waste in vermicompost production. Bioresour. Technol. 97 (2006) 2474-2477.

DOI: 10.1016/j.biortech.2005.10.018

Google Scholar