[1]
G. Miller et al., Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stress, Plant Physiol. 144 (2007) 1777–1785.
DOI: 10.1104/pp.107.101436
Google Scholar
[2]
A.M. Hoffmann, G. Noga, M. Hunsche, High blue light improves acclimation and photosynthesis recovery of pepper plants exposed to UV stress, Environ. Exp. Bot. 109 (2015) 254–263.
DOI: 10.1016/j.envexpbot.2014.06.017
Google Scholar
[3]
M. Brosche, A. Strid, Molecular events following perception of ultraviolet-B radiation by plants, Physiol. Plant 117 (2003) 1–10.
Google Scholar
[4]
M.A.K. Jansen, V. Gaba, B.M. Greenberg, Higher plant and UV-B radiation: balancing damage, repair and acclimation, Trends Plant Sci. 3 (1998) 131–135.
DOI: 10.1016/s1360-1385(98)01215-1
Google Scholar
[5]
I. Santos et al., Biochemical and ultrastrutural changes in leaves of potato plants grown under supplementary UV-B radiation, Plant Sci. 167 (2004) 925–935.
DOI: 10.1016/j.plantsci.2004.05.035
Google Scholar
[6]
A. Danon, P. Gallois, UV-C radiation induces apoptotic-like changes in Arabidopsis thaliana, FEBS Lett. 437 (1998) 131–136.
DOI: 10.1016/s0014-5793(98)01208-3
Google Scholar
[7]
E.A. Barka, Protective enzymes against reactive oxygen species during ripening of tomato (Lycopersicon eculentum) fruit in response to low amount of UV-C. Aust, J. Plant Physiol. 28 (2001) 785–791.
DOI: 10.1071/pp00070
Google Scholar
[8]
A.E Osbourn, Antimicrobial phytoprotectants and fungal pathogens: a commentary, Fungal Genet. Biol. 26 (1999) 163–168.
DOI: 10.1006/fgbi.1999.1133
Google Scholar
[9]
J.C. Pennycooke, S. Cox, C. Stushnoff, Relationship of cold acclimation, total phenolic content and antioxidant capacity with chilling tolerance in petunia (Petunia×hybrida), Environ. Exp. Bot. 53 (2005) 225–232.
DOI: 10.1016/j.envexpbot.2004.04.002
Google Scholar
[10]
T.D. Khanh, T.D. Xuan, I.M. Chung, Rice allelopathy and the possibility for weed management, Ann. App. Biol. 151 (2007) 325–339.
DOI: 10.1111/j.1744-7348.2007.00183.x
Google Scholar
[11]
S. Tawata et al., Total utilization of tropical plants Leucaena leucocephala and Alpinia zerumbet, J. Pesticide Sci. 33 (2008) 40–43.
DOI: 10.1584/jpestics.r07-10
Google Scholar
[12]
T.D. Xuan, T. Rolf, Dihydro-5,6-dehydrokavain (DDK) from Alpinia zerumbet: its isolation, synthesis, and characterization, Molecules 20 (2015) 16723–16740.
DOI: 10.3390/molecules200916306
Google Scholar
[13]
J. Chompoo et al., Advanced glycation end products inhibitors from Alpinia zerumbet rhizomes, Food Chem. 129 (2001) 709–715.
DOI: 10.1016/j.foodchem.2011.04.034
Google Scholar
[14]
J. Chompoo et al., Effect of Alpinia zerumbet components on antioxidant and skin disease-related enzymes, BMC Complem. Altern. Med. 12 (2012) 106.
DOI: 10.1186/1472-6882-12-106
Google Scholar
[15]
A. Upadhyay et al., Significant longevity-extending effects of Alpinia zerumbet leaf extract on the life span of Caenorhabditis elegans, Biosci. Biotechnol. Biochem. 77 (2013) 217–223.
DOI: 10.1271/bbb.120351
Google Scholar
[16]
A. Upadhyay et al., HIV-1 integrase and neuraminidase inhibitors from Alpinia zerumbet, J. Agri. Food Chem. 59 (2011) 2857–2862.
DOI: 10.1021/jf104813k
Google Scholar
[17]
A.A. Elzaawely, T.D. Xuan, S. Tawata, Changes in essential oils, kava pyrones and total phenolics of Alpinia zerumbet (Pers.) B.L. Burtt. & R.M. Sm. leaves exposed to copper sulphate, Environ. Exp. Bot. 59 (2007) 347–353.
DOI: 10.1016/j.envexpbot.2006.04.007
Google Scholar
[18]
A.A. Elzaawely, T.D. Xuan, S. Tawata, Essential oils, kava pyrones and phenolic compounds from leaves and rhizomes of Alpinia zerumbet (Pers.) B.L. Burtt. & R.M. Sm. and their antioxidant activity, Food Chem. 103 (2007) 486–494.
DOI: 10.1016/j.foodchem.2006.08.025
Google Scholar
[19]
P.T.B. Tu, S. Tawata, Anti-obesity effects of hispidin and Alpinia zerumbet bioactives in 3T3-adipocytes, Molecules 19 (2014) 16656–16671.
DOI: 10.3390/molecules191016656
Google Scholar
[20]
H. Itokawa, M. Morita, S. Mihashi, Phenolic compounds from the rhizomes of Alpinia speciosa, Phytochemistry 20 (1981) 2503–2506.
DOI: 10.1016/0031-9422(81)83082-8
Google Scholar
[21]
T. Fujita et al., Plant growth inhibiting α-pyrones from Alpinia speciosa, Phytochemistry 136 (1994) 23–27.
DOI: 10.1016/s0031-9422(00)97005-5
Google Scholar
[22]
S. Tawata et al., Syntheses and biological activities of dihydro-5,6-dehydrokawain derivatives, Biosci. Biotechnol. Biochem. 60 (1996) 1643–1645.
DOI: 10.1271/bbb.60.1643
Google Scholar
[23]
T.D. Xuan et al., Efficacy of extracting solvents to chemical components of kava (Piper methysticum) roots, J. Nat. Med. 62 (2008) 188–194.
DOI: 10.1007/s11418-007-0203-2
Google Scholar
[24]
M.P. Kahkonen et al., Antioxidant activity of plant extracts containing phenolic compounds, J. Agric. Food Chem. 47 (1999) 3954–3962.
Google Scholar
[25]
N. Abe, T. Murata, A. Hirot, Novel DPPH radical scavengers, bisorbicillinol and demethyltrichodimerol, from a fungus, Biosci. Biotechnol. Biochem. 62 (1998) 661–666.
DOI: 10.1271/bbb.62.661
Google Scholar
[26]
S. Son, B.A. Lewis, Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: structure–activity relationship, J. Agric. Food Chem. 50 (2002) 468–472.
DOI: 10.1021/jf010830b
Google Scholar
[27]
SAS Institute, Inc. SAS/STAT User's Guide, Version 6.12. Statistical Analysis Systems Institute, Cary, USA (1997).
Google Scholar
[28]
J.S. Bruce, A.M. Salter, Metabolic fate of oleic acid, palmitic acid and stearic acid in cultured hamster hepatocytes, Biochem. J. 316 (1996) 847–852.
DOI: 10.1042/bj3160847
Google Scholar
[29]
Y.C. Wang, C.T. Chen, S.Y. Wang, Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C, Food Chem. 117 (2009) 426–431.
DOI: 10.1016/j.foodchem.2009.04.037
Google Scholar
[30]
M. Erkan, S.Y. Wang, C.Y. Wang, Effect of UV treatment on antioxidant capacity, antioxidant enzyme activity and decay in strawberry fruit, Postharvest Biol. Tech. 48 (2008) 163–171.
DOI: 10.1016/j.postharvbio.2007.09.028
Google Scholar
[31]
C. Ouhibi et al., Salt stress mitigation by seed priming with UV-C in lettuce plants: growth, antioxidant activity and phenolic compounds, Plant Physiol. Biochem. 83 (2014) 126–133.
DOI: 10.1016/j.plaphy.2014.07.019
Google Scholar
[32]
A.B.O. Rocha et al., Effects of UV-C radiation and fluorescent light to control postharvest soft rot in potato seed tubers, Scientia. Horti. 181 (2015) 174–181.
DOI: 10.1016/j.scienta.2014.10.045
Google Scholar