[1]
L. Banos, Standard evaluation system for rice (SES), International Rice Research Institute, Philippines, 2002. (retrieved: June 25th, 2015).
Google Scholar
[2]
P.B. Tinker et al., Report of the fifth external programme and management review of International Rice Research Institute (IRRI), Brasilia: Food and Agriculture Organization of the United Nation, 1998.
Google Scholar
[3]
W.A.D. Jayawardana et al., Evaluation of DNA markers linked to blast resistant genes, pikh, pit(p), and pita, for parental selection in Sri Lankan rice breeding, Trop. Agric. Res. 26 (2014) 82-93.
DOI: 10.4038/tar.v26i1.8074
Google Scholar
[4]
X. Wang et al., Current advances on genetic resistance to rice blast disease, Agric. Biol. Sci. (2014) 195-208.
Google Scholar
[5]
N.J. Talbot, Fungal genomics goes industrial, Nat. Biotech. 25 (2007) 542-543.
Google Scholar
[6]
B. Patra et al., Transcriptional regulation of secondary metabolite biosynthesis in plants, Bochim. Biophys. Acta. 1829(11) (2013) 1236-1247.
DOI: 10.1016/j.bbagrm.2013.09.006
Google Scholar
[7]
R. Mittler, Oxidative stress, antioxidant and stress tolerance, Trends Plant Sci. 7 (2002) 405-410.
Google Scholar
[8]
K. Apel, H. Hirt, Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol. 55 (2004) 373-399.
DOI: 10.1146/annurev.arplant.55.031903.141701
Google Scholar
[9]
S. Mahajan, N. Tuteja, Cold, salinity and drought stresses: an overview, Arch. Biochem. Biophys. 444 (2005) 139-158.
DOI: 10.1016/j.abb.2005.10.018
Google Scholar
[10]
N. Tuteja, Chapter Twenty-Four - Mechanisms of high salinity tolerance in plants, Methods in Enzymology. 428 (2007) 419-438.
DOI: 10.1016/s0076-6879(07)28024-3
Google Scholar
[11]
N. Tuteja, Cold, salt and drought stress, in: H. Hirt (Ed.), Plant Stress Biology: From Genomics towards System Biology, Wiley-Blackwell, Weinheim, Germany, 2010, pp.137-159.
DOI: 10.1002/9783527628964.ch7
Google Scholar
[12]
N.A. Khan, S. Singh, Abiotic stress and plant responses, I K Pub, New Delhi, 2008.
Google Scholar
[13]
S.S. Gill et al., Amelioration of cadmium stress in crop plants by nutrients management: Morphological, physiological and biochemical aspects, Plant Stress. 5(1) (2011) 1-23.
Google Scholar
[14]
R. Mittler et al., Reactive oxygen gene network of plants, Trends Plant Sci. 9 (2004) 490-498.
Google Scholar
[15]
M. Walter, E. Marchesan, Phenolic compounds and antioxidant activity of rice, Braz. Arch. Boil. Technol. 54 (2011) 371-377.
DOI: 10.1590/s1516-89132011000200020
Google Scholar
[16]
A. Hyogo et al., Antioxidant effects of protocatechuic acid, ferulic acid, and caffeic acid in human neutrophils using a fluorescent substance, Int. J. Morphol. 28 (2010) 911-920.
DOI: 10.4067/s0717-95022010000300040
Google Scholar
[17]
H. Ti et al., Free and bound phenolic profiles and antioxidant activity of milled fractions of different indica rice varieties cultivated in southern China, Food Chem. 159 (2014) 166–174.
DOI: 10.1016/j.foodchem.2014.03.029
Google Scholar
[18]
A. Djeridane et al., Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds, Food Chem. 97(4) (2006) 654–660.
DOI: 10.1016/j.foodchem.2005.04.028
Google Scholar
[19]
A.A. Elzaawely, T.D. Xuan, S. Tawata, Antioxidant and antibacterial activities of Rumex japonicus HOUTT. Aerial parts, Biol. Pharm. Bull. 28(12) (2005) 2225–2230.
DOI: 10.1248/bpb.28.2225
Google Scholar
[20]
A. Yildirim, A. Mavi, A.A. Kara, Antioxidant and antimicrobial activities of Polygonum cognatum Meissn extracts, J. Sci. Food Agric. 83(1) (2003) 64-69.
DOI: 10.1002/jsfa.1288
Google Scholar
[21]
Z. Zhang et al., Antioxidant phenolic compounds from walnut kernels (Juglans regia L), Food Chem. 113 (2009) 160-165.
DOI: 10.1016/j.foodchem.2008.07.061
Google Scholar
[22]
T.D. Xuan et al., Correlation between growth inhibitory exhibition and suspected allelochemicals (phenolic compounds) in the extract of alfalfa (Medicago sativa L.), Plant Prod. Sci. 6(3) (2003) 165–171.
DOI: 10.1626/pps.6.165
Google Scholar