Interaction between C-Reactive Protein and Phytochemical(s) from Calotropis procera: An Approach on Molecular Docking

Article Preview

Abstract:

The present study was attempted to detect potential phytoconstituents in C. procera against inflammation and pain. CRP is known to be increased up to 10,000 fold when acute inflammation take place in human. The interaction between C-reactive protein and phytochemical(s) from Calotropis procera was carried out with the help of molecular docking by using PyRx software (Ver. 0.8) and LigPlot software (Ver. 1.4) to compare energy value and binding site of phytochemicals in reference to established synthetic non-steroidal anti-inflammatory drugs (NSAIDs). The data suggest that the interaction between CRP and two phytochemicals namely methyl myrisate (-3.0) and methyl behenate (-3.2) showed close energy value (kcal/mol) and binding site in comparison to paracetamol (-3.9), ibobrufen (-4.2) while three phytochemicals viz. β-sitosterol (-5.6), uzarigenin (-5.5) and anthocyanins (-5.4) closely related to indomethacin (-5.2) in relation to energy value and binding site. In conclusion, based on molecular docking we found few phytochemicals of C. procera that can be used as lead compound(s) in future drug development as analgesic and anti-inflammatory agent at low cost. It is also suggested to carry out functional assay of predicted compounds to validate suitability of this lead.

Info:

* - Corresponding Author

[1] Y.M. de la Torre et al., Evolution of the pentraxin family: The new entry PTX4, J. Immunol. 184 (2010) 5055-5064.

DOI: 10.4049/jimmunol.0901672

Google Scholar

[2] M.B. Pepys, G.M. Hirschfield, C-reactive protein: a critical update, J. Clin. Invest. 111 (2003) 1805-1812.

DOI: 10.1172/jci200318921

Google Scholar

[3] W.S. Tillet, T. Francis Jr., Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus, J. Exp. Med. 52 (1930) 561-571.

DOI: 10.1084/jem.52.4.561

Google Scholar

[4] M.B. Pepys, M.L. Baltz, Acute phase proteins with special reference to C-reactive protein and related proteins (pentaxins) and serum amyloid A protein, Adv. Immunol. 34 (1983) 141-212.

DOI: 10.1016/s0065-2776(08)60379-x

Google Scholar

[5] M.B. Pepys, The acute phase response and C-reactive protein, in: Oxford Textbook of Medicine, D.J. Weatherall, J.G.G. Ledingham D.A. Warrell (eds.) 3rd ed. Oxford, Oxford University Press, 1995, pp.1527-1533.

DOI: 10.1093/med/9780199204854.003.121201_update_001

Google Scholar

[6] D. Thompson, M.B. Pepys, S.P. Wood, The physiological structure of human C-reactive protein and its complex with phosphocholine, Structure. 7(2) (1999) 169-177.

DOI: 10.1016/s0969-2126(99)80023-9

Google Scholar

[7] S. Black, I. Kushner, D. Samols, C-reactive protein, J. Biol. Chem. 279(47) (2004) 48487-48490.

DOI: 10.1074/jbc.r400025200

Google Scholar

[8] A. Tomlinson et al., Cyclo-oxygenase and nitric oxide synthase isoforms in rat anti-inflam-induced pleurisy, Br. J. Pharmacol. 113 (1994) 693-698.

DOI: 10.1111/j.1476-5381.1994.tb17048.x

Google Scholar

[9] G. Parihar et al., Anti-inflammatory effect of Calotropis procera root bark extract, Asian Journal of Pharmacy and Life Science. 1(1) (2011) 29-44.

Google Scholar

[10] S.H. Edwards, Chemicals mediators of inflammation, in: Anti-inflammatory agents. The Merck Veterinary Manual, 2014. Available: http://www.merckvetmanual.com/mvm/pharmacology/ anti-inflammatory_agents/chemical_ mediators_of_inflammation.html#v3337363.

DOI: 10.2174/1568014023355881

Google Scholar

[11] Y. Okada et al., Genome-wide association study for C-reactive protein levels identified pleiotropic associations in the IL6 locus, Hum. Mol. Gen. 20(6) (2011) 1224-1231.

DOI: 10.1093/hmg/ddq551

Google Scholar

[12] C.A. Denarello, Proinflammatory cytokines, Chest. 118(2) (2000) 503-508.

Google Scholar

[13] J-M. Zhang, J. An, Cytokines, inflammation and pain, Int. Anesthesiol. Clin. 45(2) (2007) 27-37.

Google Scholar

[14] P. Bretscher et al., Phospholipid oxidation generates potent anti-inflammatory lipid mediators that mimic structurally related pro-resolving eicosanoids by activating Nrf2, EMBO Mol. Med. 7 (2015) 593-607.

DOI: 10.15252/emmm.201404702

Google Scholar

[15] H. Tilg et al., Antiinflammatory properties of hepatic acute phase proteins: preferential induction of interleukin 1 (IL-1) receptor antagonist over IL-1 beta synthesis by human peripheral blood mononuclear cells, J. Exp. Med. 178(5) (1993) 1629-1636.

DOI: 10.1084/jem.178.5.1629

Google Scholar

[16] C. Mold et al., C-reactive protein mediates protection from lipopolysaccharide through interactions with FcγR, J. Immunol. 169(12) (2002) 7019-7025.

DOI: 10.4049/jimmunol.169.12.7019

Google Scholar

[17] A.J. Szalai et al., Experimental allergic encephalomyelitis is inhibited in transgenic mice expressing human C-reactive protein, J. Immunol. 168 (2002) 5792-5797.

DOI: 10.4049/jimmunol.168.11.5792

Google Scholar

[18] S.K. Venugopal et al., Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells, Circulation. 106(12) (2002) 1439-1441.

DOI: 10.1161/01.cir.0000033116.22237.f9

Google Scholar

[19] S.P. Ballou, G. Lozanski, Induction of inflammatory cytokine release from cultured human monocytes by C-reactive protein, Cytokine. 4(5) (1992) 361-368.

DOI: 10.1016/1043-4666(92)90079-7

Google Scholar

[20] A.S. Reddy et al., Virtual screening in drug discovery - A computational perspective, Curr. Pro. Pept. Sci. 8(4) (2007) 329-351.

Google Scholar

[21] A. Lavecchia, C. Di Giovanni, Virtual screening strategies in drug discovery: A critical review, Curr. Med. Chem. 20(23) (2013) 2839-2860.

DOI: 10.2174/09298673113209990001

Google Scholar

[22] E. Lionta et al., Structure-based virtual screening for drug discovery: Principles, applications and recent advances, Curr. Top. Med. Chem. 14 (2014) 1923-1938.

DOI: 10.2174/1568026614666140929124445

Google Scholar

[23] W.L. Jorgensen, The many roles of computation in drug discovery, Science. 303 (2004) 1813-1818.

DOI: 10.1126/science.1096361

Google Scholar

[24] A.K. Sharma, R. Kharb, R. Kaur, Pharmacognostical aspects of Calotropis procera (Ait.) R. Br., Int. J. Pharm. Biol. Sci. 2(3) (2011) B480-B488.

Google Scholar

[25] P. Chandrawat, R.A. Sharma, An overview on giant milkweed (Calotropis procera (Ait.) Ait. f.), Journal of Plant Sciences. 3(1-1) (2015) 19-23.

Google Scholar

[26] J.S. Mossa et al., Pharmacological studies on aerial parts of Calotropis procera, Am. J. Chin. Med. 19 (1991) 223.

DOI: 10.1142/s0192415x91000302

Google Scholar

[27] A.C. Ranab, J.V. Kamatha, Preliminary study on antifertility activity of Calotropis procera roots in female rats, Fitoterapia. 73(1) (2002) 111-115.

DOI: 10.1016/s0367-326x(02)00005-9

Google Scholar

[28] V.L. Kumar et al., Antioxidant and protective effect of latex of Calotropis procera against alloxan induced diabetes in rats, J. Ethnopharmacol. 102(3) (2005) 470-473.

DOI: 10.1016/j.jep.2005.06.026

Google Scholar

[29] I. Zafar, L. Muhammad, J. Abdul, Anthelmintic activity of Calotropis procera (Ait.), flowers in sheep, J. Ethnopharmacol. 102(2) (2005) 256-261.

DOI: 10.1016/j.jep.2005.06.022

Google Scholar

[30] M. Rajani, S.K. Gupta, Anti-tumor studies with extracts of Calotropis procera (Ait.) R.Br. root employing Hep2 cells and their possible mechanism of action, Indian J. Exp. Biol. 47(5) (2009) 343-348.

Google Scholar

[31] O.O. Shobowale et al., Phytochemical and antimicrobial evaluation of aqueous and organic extracts of Calotropis procera ait leaf and latex, Niger. Food J. 31(1) (2013) 77-82.

DOI: 10.1016/s0189-7241(15)30059-x

Google Scholar

[32] S. Quazi, K. Mathur, S. Arora, Calotropis procera: An overview of its phytochemistry and pharmacology, Indian Journal of Drugs. 1(2) (2013) 63-69.

Google Scholar

[33] D.A. Brodie et al., Indomethacin-induced intestinal lesions in the rat, Toxicol. Appl. Pharmacol. 17 (1970) 615-624.

Google Scholar

[34] I. Bjarnason et al., Side effects of nonsteroidal anti-inflammatory drugs on the small and large intestine in humans, Gastroenterology. 104 (1993) 1832-1847.

DOI: 10.1016/0016-5085(93)90667-2

Google Scholar

[35] K. Higuchi et al., Present status and strategy of NSAIDs induced small bowel injury, J. Gastroenterol. 44 (2009) 879-888.

DOI: 10.1007/s00535-009-0102-2

Google Scholar

[36] K. Higuchi et al., Prevention of NSAID-induced small intestinal mucosal injury: prophylactic potential of lansoprazole, J. Clin. Biochem. Nutr. 45 (2009) 125-130.

DOI: 10.3164/jcbn.sr09-58

Google Scholar

[37] H. Matsui et al., The pathophysiology of non-steroidal anti-inflammatory drug (NSAID)-induced mucosal injuries in stomach and small intestine, J. Clin. Biochem. Nutr. 48(2) (2011) 107-111.

DOI: 10.3164/jcbn.10-79

Google Scholar

[38] N. Mascolo et al., Ethnopharmacology of Calotropis procera flowers, J. Ethnopharmacol. 22(2) (1998) 211-221.

Google Scholar

[39] S. Dewan, H. Sangraula, V.L. Kumar, Preliminary studies on the analgesic activity of latex of Calotropris procera, J. Ethnopharmacol. 73(1-2) (2000) 307-311.

DOI: 10.1016/s0378-8741(00)00272-5

Google Scholar

[40] C.A. Winter, E.A. Risley, C.W. Nuss, Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs, Proc. Soc. Exp. Biol. Med. 111 (1962) 544-547.

DOI: 10.3181/00379727-111-27849

Google Scholar

[41] O. Trott, A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, J. Comput. Chem. 31 (2010) 455-461.

DOI: 10.1002/jcc.21334

Google Scholar

[42] G.M. Morris et al., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, J. Comput. Chem. 19 (1998) 1639-1662.

DOI: 10.1002/(sici)1096-987x(19981115)19:14<1639::aid-jcc10>3.0.co;2-b

Google Scholar

[43] A.C. Wallace, R.A. Laskowski, J.M. Thornton, LIGPLOT: A program to generate schematic diagrams of protein–ligand interactions, Protein Eng. 8 (1995) 127-134.

DOI: 10.1093/protein/8.2.127

Google Scholar

[44] A.K. Shrivastava et al., C-reactive protein, inflammation and coronary heart disease, The Egyptian Heart Journal. 67 (2015) 89-97.

DOI: 10.1016/j.ehj.2014.11.005

Google Scholar

[45] D. Samols, A. Agrawal, I. Kushner, Acute phase proteins, in: Cytokine Reference On-Line, M. Feldman, J.J. Oppenheim (eds.), Academic Press, London, 2002, pp.1-16.

Google Scholar

[46] A. Basu, A.K.N. Chaudhury, Preliminary studies on the anti-inflammatory and analgesic activities of Calotropis procera root extract, J. Ethnopharmacol. 31 (1991) 319-324.

DOI: 10.1016/0378-8741(91)90017-8

Google Scholar

[47] V.L. Kumar, N. Basu, Anti-inflammatory activity of the latex of Calotropis procera, J. Ethnopharmacol. 44(2) (1994) 123-125.

DOI: 10.1016/0378-8741(94)90078-7

Google Scholar

[48] W. Koenig et al., C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992, Circulation. 99(2) (1999) 237-242.

DOI: 10.1161/01.cir.99.2.237

Google Scholar