[1]
Y.M. de la Torre et al., Evolution of the pentraxin family: The new entry PTX4, J. Immunol. 184 (2010) 5055-5064.
DOI: 10.4049/jimmunol.0901672
Google Scholar
[2]
M.B. Pepys, G.M. Hirschfield, C-reactive protein: a critical update, J. Clin. Invest. 111 (2003) 1805-1812.
DOI: 10.1172/jci200318921
Google Scholar
[3]
W.S. Tillet, T. Francis Jr., Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus, J. Exp. Med. 52 (1930) 561-571.
DOI: 10.1084/jem.52.4.561
Google Scholar
[4]
M.B. Pepys, M.L. Baltz, Acute phase proteins with special reference to C-reactive protein and related proteins (pentaxins) and serum amyloid A protein, Adv. Immunol. 34 (1983) 141-212.
DOI: 10.1016/s0065-2776(08)60379-x
Google Scholar
[5]
M.B. Pepys, The acute phase response and C-reactive protein, in: Oxford Textbook of Medicine, D.J. Weatherall, J.G.G. Ledingham D.A. Warrell (eds.) 3rd ed. Oxford, Oxford University Press, 1995, pp.1527-1533.
DOI: 10.1093/med/9780199204854.003.121201_update_001
Google Scholar
[6]
D. Thompson, M.B. Pepys, S.P. Wood, The physiological structure of human C-reactive protein and its complex with phosphocholine, Structure. 7(2) (1999) 169-177.
DOI: 10.1016/s0969-2126(99)80023-9
Google Scholar
[7]
S. Black, I. Kushner, D. Samols, C-reactive protein, J. Biol. Chem. 279(47) (2004) 48487-48490.
DOI: 10.1074/jbc.r400025200
Google Scholar
[8]
A. Tomlinson et al., Cyclo-oxygenase and nitric oxide synthase isoforms in rat anti-inflam-induced pleurisy, Br. J. Pharmacol. 113 (1994) 693-698.
DOI: 10.1111/j.1476-5381.1994.tb17048.x
Google Scholar
[9]
G. Parihar et al., Anti-inflammatory effect of Calotropis procera root bark extract, Asian Journal of Pharmacy and Life Science. 1(1) (2011) 29-44.
Google Scholar
[10]
S.H. Edwards, Chemicals mediators of inflammation, in: Anti-inflammatory agents. The Merck Veterinary Manual, 2014. Available: http://www.merckvetmanual.com/mvm/pharmacology/ anti-inflammatory_agents/chemical_ mediators_of_inflammation.html#v3337363.
DOI: 10.2174/1568014023355881
Google Scholar
[11]
Y. Okada et al., Genome-wide association study for C-reactive protein levels identified pleiotropic associations in the IL6 locus, Hum. Mol. Gen. 20(6) (2011) 1224-1231.
DOI: 10.1093/hmg/ddq551
Google Scholar
[12]
C.A. Denarello, Proinflammatory cytokines, Chest. 118(2) (2000) 503-508.
Google Scholar
[13]
J-M. Zhang, J. An, Cytokines, inflammation and pain, Int. Anesthesiol. Clin. 45(2) (2007) 27-37.
Google Scholar
[14]
P. Bretscher et al., Phospholipid oxidation generates potent anti-inflammatory lipid mediators that mimic structurally related pro-resolving eicosanoids by activating Nrf2, EMBO Mol. Med. 7 (2015) 593-607.
DOI: 10.15252/emmm.201404702
Google Scholar
[15]
H. Tilg et al., Antiinflammatory properties of hepatic acute phase proteins: preferential induction of interleukin 1 (IL-1) receptor antagonist over IL-1 beta synthesis by human peripheral blood mononuclear cells, J. Exp. Med. 178(5) (1993) 1629-1636.
DOI: 10.1084/jem.178.5.1629
Google Scholar
[16]
C. Mold et al., C-reactive protein mediates protection from lipopolysaccharide through interactions with FcγR, J. Immunol. 169(12) (2002) 7019-7025.
DOI: 10.4049/jimmunol.169.12.7019
Google Scholar
[17]
A.J. Szalai et al., Experimental allergic encephalomyelitis is inhibited in transgenic mice expressing human C-reactive protein, J. Immunol. 168 (2002) 5792-5797.
DOI: 10.4049/jimmunol.168.11.5792
Google Scholar
[18]
S.K. Venugopal et al., Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells, Circulation. 106(12) (2002) 1439-1441.
DOI: 10.1161/01.cir.0000033116.22237.f9
Google Scholar
[19]
S.P. Ballou, G. Lozanski, Induction of inflammatory cytokine release from cultured human monocytes by C-reactive protein, Cytokine. 4(5) (1992) 361-368.
DOI: 10.1016/1043-4666(92)90079-7
Google Scholar
[20]
A.S. Reddy et al., Virtual screening in drug discovery - A computational perspective, Curr. Pro. Pept. Sci. 8(4) (2007) 329-351.
Google Scholar
[21]
A. Lavecchia, C. Di Giovanni, Virtual screening strategies in drug discovery: A critical review, Curr. Med. Chem. 20(23) (2013) 2839-2860.
DOI: 10.2174/09298673113209990001
Google Scholar
[22]
E. Lionta et al., Structure-based virtual screening for drug discovery: Principles, applications and recent advances, Curr. Top. Med. Chem. 14 (2014) 1923-1938.
DOI: 10.2174/1568026614666140929124445
Google Scholar
[23]
W.L. Jorgensen, The many roles of computation in drug discovery, Science. 303 (2004) 1813-1818.
DOI: 10.1126/science.1096361
Google Scholar
[24]
A.K. Sharma, R. Kharb, R. Kaur, Pharmacognostical aspects of Calotropis procera (Ait.) R. Br., Int. J. Pharm. Biol. Sci. 2(3) (2011) B480-B488.
Google Scholar
[25]
P. Chandrawat, R.A. Sharma, An overview on giant milkweed (Calotropis procera (Ait.) Ait. f.), Journal of Plant Sciences. 3(1-1) (2015) 19-23.
Google Scholar
[26]
J.S. Mossa et al., Pharmacological studies on aerial parts of Calotropis procera, Am. J. Chin. Med. 19 (1991) 223.
DOI: 10.1142/s0192415x91000302
Google Scholar
[27]
A.C. Ranab, J.V. Kamatha, Preliminary study on antifertility activity of Calotropis procera roots in female rats, Fitoterapia. 73(1) (2002) 111-115.
DOI: 10.1016/s0367-326x(02)00005-9
Google Scholar
[28]
V.L. Kumar et al., Antioxidant and protective effect of latex of Calotropis procera against alloxan induced diabetes in rats, J. Ethnopharmacol. 102(3) (2005) 470-473.
DOI: 10.1016/j.jep.2005.06.026
Google Scholar
[29]
I. Zafar, L. Muhammad, J. Abdul, Anthelmintic activity of Calotropis procera (Ait.), flowers in sheep, J. Ethnopharmacol. 102(2) (2005) 256-261.
DOI: 10.1016/j.jep.2005.06.022
Google Scholar
[30]
M. Rajani, S.K. Gupta, Anti-tumor studies with extracts of Calotropis procera (Ait.) R.Br. root employing Hep2 cells and their possible mechanism of action, Indian J. Exp. Biol. 47(5) (2009) 343-348.
Google Scholar
[31]
O.O. Shobowale et al., Phytochemical and antimicrobial evaluation of aqueous and organic extracts of Calotropis procera ait leaf and latex, Niger. Food J. 31(1) (2013) 77-82.
DOI: 10.1016/s0189-7241(15)30059-x
Google Scholar
[32]
S. Quazi, K. Mathur, S. Arora, Calotropis procera: An overview of its phytochemistry and pharmacology, Indian Journal of Drugs. 1(2) (2013) 63-69.
Google Scholar
[33]
D.A. Brodie et al., Indomethacin-induced intestinal lesions in the rat, Toxicol. Appl. Pharmacol. 17 (1970) 615-624.
Google Scholar
[34]
I. Bjarnason et al., Side effects of nonsteroidal anti-inflammatory drugs on the small and large intestine in humans, Gastroenterology. 104 (1993) 1832-1847.
DOI: 10.1016/0016-5085(93)90667-2
Google Scholar
[35]
K. Higuchi et al., Present status and strategy of NSAIDs induced small bowel injury, J. Gastroenterol. 44 (2009) 879-888.
DOI: 10.1007/s00535-009-0102-2
Google Scholar
[36]
K. Higuchi et al., Prevention of NSAID-induced small intestinal mucosal injury: prophylactic potential of lansoprazole, J. Clin. Biochem. Nutr. 45 (2009) 125-130.
DOI: 10.3164/jcbn.sr09-58
Google Scholar
[37]
H. Matsui et al., The pathophysiology of non-steroidal anti-inflammatory drug (NSAID)-induced mucosal injuries in stomach and small intestine, J. Clin. Biochem. Nutr. 48(2) (2011) 107-111.
DOI: 10.3164/jcbn.10-79
Google Scholar
[38]
N. Mascolo et al., Ethnopharmacology of Calotropis procera flowers, J. Ethnopharmacol. 22(2) (1998) 211-221.
Google Scholar
[39]
S. Dewan, H. Sangraula, V.L. Kumar, Preliminary studies on the analgesic activity of latex of Calotropris procera, J. Ethnopharmacol. 73(1-2) (2000) 307-311.
DOI: 10.1016/s0378-8741(00)00272-5
Google Scholar
[40]
C.A. Winter, E.A. Risley, C.W. Nuss, Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs, Proc. Soc. Exp. Biol. Med. 111 (1962) 544-547.
DOI: 10.3181/00379727-111-27849
Google Scholar
[41]
O. Trott, A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, J. Comput. Chem. 31 (2010) 455-461.
DOI: 10.1002/jcc.21334
Google Scholar
[42]
G.M. Morris et al., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, J. Comput. Chem. 19 (1998) 1639-1662.
DOI: 10.1002/(sici)1096-987x(19981115)19:14<1639::aid-jcc10>3.0.co;2-b
Google Scholar
[43]
A.C. Wallace, R.A. Laskowski, J.M. Thornton, LIGPLOT: A program to generate schematic diagrams of protein–ligand interactions, Protein Eng. 8 (1995) 127-134.
DOI: 10.1093/protein/8.2.127
Google Scholar
[44]
A.K. Shrivastava et al., C-reactive protein, inflammation and coronary heart disease, The Egyptian Heart Journal. 67 (2015) 89-97.
DOI: 10.1016/j.ehj.2014.11.005
Google Scholar
[45]
D. Samols, A. Agrawal, I. Kushner, Acute phase proteins, in: Cytokine Reference On-Line, M. Feldman, J.J. Oppenheim (eds.), Academic Press, London, 2002, pp.1-16.
Google Scholar
[46]
A. Basu, A.K.N. Chaudhury, Preliminary studies on the anti-inflammatory and analgesic activities of Calotropis procera root extract, J. Ethnopharmacol. 31 (1991) 319-324.
DOI: 10.1016/0378-8741(91)90017-8
Google Scholar
[47]
V.L. Kumar, N. Basu, Anti-inflammatory activity of the latex of Calotropis procera, J. Ethnopharmacol. 44(2) (1994) 123-125.
DOI: 10.1016/0378-8741(94)90078-7
Google Scholar
[48]
W. Koenig et al., C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992, Circulation. 99(2) (1999) 237-242.
DOI: 10.1161/01.cir.99.2.237
Google Scholar