[1]
B.L. Davidson, P.B. McCray Jr., Current prospects for RNA interference-based therapies, Nature Reviews Genetics. 12 (2011) 329-340.
DOI: 10.1038/nrg2968
Google Scholar
[2]
E.J. Finnegan, M.A. Matzke, The small RNA world, Journal of Cell Science. 116(23) (2003) 4689-4693.
DOI: 10.1242/jcs.00838
Google Scholar
[3]
Q. Liu, Y. Feng, Z. Zhu, Dicer-like (DCL) proteins in plants, Funct. Integr. Genomics. 9(3) (2009) 277-286.
DOI: 10.1007/s10142-009-0111-5
Google Scholar
[4]
A.F. Fusaro et al., RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway, EMBO reports. 7(11) (2006) 1168–1175.
DOI: 10.1038/sj.embor.7400837
Google Scholar
[5]
X. Chen, microRNA biogenesis and function in plants, FEBS Letters. 579(26) (2005) 5923-5931.
DOI: 10.1016/j.febslet.2005.07.071
Google Scholar
[6]
N.S. Mishra, S.K. Mukherjee, A Peep into the Plant miRNA World, The Open Plant Science Journal. 12 (2007) 1-9.
Google Scholar
[7]
A.L. Eamens et al., DRB2 Is Required for MicroRNA Biogenesis in Arabidopsis thaliana, PLoS ONE. 7(4) (2012) 1-15.
DOI: 10.1371/journal.pone.0035933
Google Scholar
[8]
Y. Kurihara, Y. Takashi, Y. Watanabe, The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis, RNA. 12 (2006) 206-212.
DOI: 10.1261/rna.2146906
Google Scholar
[9]
B. Yu et al., The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in human's act in small RNA biogenesis, Proceedings of the National Academy of Sciences. 105(29) (2008) 10073–10078.
DOI: 10.1073/pnas.0804218105
Google Scholar
[10]
Y. Fang, D.L. Spector, Identification of Nuclear Dicing Bodies Containing Proteins for MicroRNA Biogenesis in Living Arabidopsis Plants, Curr. Biol. 17(9) (2007) 818–823.
DOI: 10.1016/j.cub.2007.04.005
Google Scholar
[11]
A. Hiraguri et al., Specific interactions between Dicer-like proteins and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana, Plant Mol. Biol. 57(2) (2005) 173-188.
DOI: 10.1007/s11103-004-6853-5
Google Scholar
[12]
A. Eamens et al., RNA Silencing in Plants: Yesterday, Today, and Tomorrow, Plant Physiology. 147 (2008) 456–468.
DOI: 10.1104/pp.108.117275
Google Scholar
[13]
H. Qin et al., Structure of the Arabidopsis thaliana DCL4 DUF283 domain reveals a noncanonical double-stranded RNA-binding fold for protein–protein interaction, RNA. 16(3) (2010) 474–481.
DOI: 10.1261/rna.1965310
Google Scholar
[14]
F. Vazquez et al., Arabidopsis endogenous small RNAs: highways and byways, Trends in Plant Science. 11(9) (2006) 460-468.
DOI: 10.1016/j.tplants.2006.07.006
Google Scholar
[15]
Z. Xie et al., Genetic and functional diversification of small RNA pathways in plants, PLoS Biol. 2(5) (2004) 642-652.
Google Scholar
[16]
F. Qu et al., Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1, Proceedings of the National Academy of Sciences. 105(38) (2008) 14732-14737.
DOI: 10.1073/pnas.0805760105
Google Scholar
[17]
Y. Nakazawa et al., The dsRNA-binding protein DRB4 interacts with the Dicer-like protein DCL4 in vivo and functions in the trans-acting siRNA pathway, Plant Mol. Biol. 63(6) (2007) 777-785.
DOI: 10.1007/s11103-006-9125-8
Google Scholar
[18]
A. Fukudome et al., Specific requirement of DRB4, a dsRNA-binding protein, for the in vitro dsRNA-cleaving activity of Arabidopsis Dicer-like 4, RNA. 17(4) (2011) 750-760.
DOI: 10.1261/rna.2455411
Google Scholar
[19]
A. Mallory, H. Vaucheret, Form, Function, and Regulation of ARGONAUTE Proteins, The Plant Cell. 22 (2010) 3879–3889.
DOI: 10.1105/tpc.110.080671
Google Scholar
[20]
P. Benkert et al., QMEAN: A comprehensive scoring function for model quality assessment, Proteins: Structure, Function, and Bioinformatics. 71(1) (2008) 261-277.
DOI: 10.1002/prot.21715
Google Scholar
[21]
P. Benkert, et al., QMEAN Server for Protein Model Quality Estimation, Nucleic Acids Res. 37(1) (2009) 1-5.
DOI: 10.1093/nar/gkp322
Google Scholar
[22]
P. Benkert et.al., Toward the estimation of the absolute quality of individual protein structure models, Bioinformatics. 27(3) (2011) 343-350.
DOI: 10.1093/bioinformatics/btq662
Google Scholar
[23]
S.R. Comeau et al., ClusPro: an automated docking and discrimination method for the prediction of protein complexes, Bioinformatics. 20(1) (2004) 45-50.
DOI: 10.1093/bioinformatics/btg371
Google Scholar
[24]
S.R. Comeau et al., ClusPro: a fully automated algorithm for protein-protein docking, Nucleic Acids Research. 32(2) (2004) 96-99.
DOI: 10.1093/nar/gkh354
Google Scholar
[25]
D. Kozakov et al., PIPER: An FFT-based protein docking program with pairwise potentials, Proteins. 65(2) (2006) 392-406.
DOI: 10.1002/prot.21117
Google Scholar
[26]
D. Kozakov et al., How good is automated protein docking? Proteins. 81(12) (2013) 2159-2166.
DOI: 10.1002/prot.24403
Google Scholar