[1]
C. Tsiouvaras et al., Forests and grazing forest ecosystems of burned regions: Suggestions for raising and restoration, in Fires 2007, From devastation to development, Athens, Greece, 2008, pp.169-190.
Google Scholar
[2]
C. Kosmas et al., Erosion of soils after fires, measures of handling, in Fires 2007, From devastation to development, Athens, Greece, 2008, pp.125-149.
Google Scholar
[3]
A. Chronopoulou-Sereli et al., Evaluation of the meteorological danger for the prevention of fires, in Fires 2007, From devastation to development, Athens, Greece, 2008, pp.191-213.
Google Scholar
[4]
A. Holsten et al., Evaluation of the performance of meteorological forest fire indices for German federal states, Forest Ecology and Management. 287 (2013) 123-131.
DOI: 10.1016/j.foreco.2012.08.035
Google Scholar
[5]
A. Chronopoulou-Sereli et al., General and Specific Topics of Bioclimatology, Applications-Exercises, Ziti Publ., Thessaloniki, Greece, 2012.
Google Scholar
[6]
C. Chandler et al., Fire in Forestry. Volume 1. Forest fire behavior and effects, John Wiley & Sons Inc., New York, 1983.
Google Scholar
[7]
A. Arpaci et al., A collection of possible fire weather indices (FWI) for alpine landscapes, ALP FFIRS project report, 2010.
Google Scholar
[8]
B. Sol, Estimation du risque météorologique d'incendies de forêts dans le Sud-est de la France, Revue Forestière Française. XLII (1990) 263-271.
DOI: 10.4267/2042/26148
Google Scholar
[9]
J.-C. Drouet, B. Sol, Mise au point d'un indice numérique de risque météorologique d'incendies de forêts, Forêt Méditerranéenne. 14(2) (1993) 155-162.
Google Scholar
[10]
A.G. McArthur, Weather and grassland fire behaviour, Department of National Development, Forestry and Timber Bureau Leaflet No. 100, Canberra, Australia, 1966.
Google Scholar
[11]
A.G. McArthur, Forest fire danger meter, Mk 5, Forest Research Institute, Forestry and Timber Bureau, Canberra, Australia, 1973.
Google Scholar
[12]
A.G. McArthur, Grassland fire danger meter, Mk 5, Country Fire Authority of Victoria, Melbourne, Australia, 1977.
Google Scholar
[13]
I.R. Noble, G.A.V. Bary, A.M. Gill, McArthur's fire-danger meters expressed as equations, Australian Journal of Ecology. 5 (1980) 201-203.
DOI: 10.1111/j.1442-9993.1980.tb01243.x
Google Scholar
[14]
C.E. Van Wagner, Development and structure of the Canadian forest fire weather index system, Technical Report 35, Canadian Forestry Service, Canada, 1987.
Google Scholar
[15]
V. Gouma, A methodology for the spatial-temporal assessment of forest fire meteorogical risk in mountainous areas: application in mountain Parnes, Ph.D. dissertation, Dept. Gen. Sci., Agric. Univ., Athens, Greece, 2001.
Google Scholar
[16]
M. Zorro Gonçalves, L. Lourenço, Meteorological index of forest fire risk in the Portuguese mainland territory, in: International Conference on Forest Fire Research, Coimbra, Portugal, 1990, pp.1-14.
Google Scholar
[17]
I. Aguado et al., Estimation of meteorological fire danger indices from multitemporal series of NOAA-AVHRR data, in 3rd International Conference on Forest Fires Research, 14th Conference on Fire and Forest Meteorology, Coimbra, Portugal, 1998, pp.1131-1147.
Google Scholar
[18]
Y. Liu et al., Analysis of the impact of the forest fires in August 2007 on air quality of Athens using multi-sensor aerosol remote sensing data, meteorology and surface observations, Atmospheric Environment. 43(21) (2009) 3310-3318.
DOI: 10.1016/j.atmosenv.2009.04.010
Google Scholar
[19]
J. Chalatsis, Mountainous Nafpaktia, 2017. Available: http://www.nafpaktos.gr.
Google Scholar
[20]
Anonymous, Google Earth, 2017. Available: https://www.google.com/earth/.
Google Scholar
[21]
K. Chronopoulos et al., An artificial neural network model application for the estimation of thermal comfort conditions in mountainous regions, Greece, Atmósfera. 25(2) (2012) 171-181.
Google Scholar
[22]
P. Roussos et al., Relations of environmental factors with the phenol content and oxidative enzyme activities of olive explants, Scientia Horticulturae. 113(1) (2007) 100-102.
DOI: 10.1016/j.scienta.2007.01.017
Google Scholar
[23]
A. Matsoukis, K. Chronopoulos, Estimating inside air temperature of a glasshouse using statistical models, Current World Environment. 12(1) (2017) 1-5.
DOI: 10.12944/cwe.12.1.01
Google Scholar
[24]
G. Feng et al., Two paradoxes in linear regression analysis, Shanghai Archives of Psychiatry. 28(6) (2016) 355-360.
Google Scholar
[25]
A.C. Rencher, G.B. Schaalje, Linear Models in Statistics, 2nd ed., John Wiley & Sons Inc., Hoboken, New Jersey, 2008.
Google Scholar
[26]
P.I. Kaltsikes, Simple Experimental Designs, Stamoulis Publ., Athens, Greece, 1997.
Google Scholar
[27]
J.H. Zar, Biostatistical Analysis, 4th ed., Prentice Hall, Upper Saddle River, New Jersey, 1999.
Google Scholar
[28]
A. Kamoutsis et al., A comparative study of human thermal comfort conditions in two mountainous regions in Greece during summer, Global Nest Journal. 12(4) (2010) 401-408.
DOI: 10.30955/gnj.000630
Google Scholar
[29]
Ø. Hodnebrog et al., Impact of forest fires, biogenic emissions and high temperatures on the elevated Eastern Mediterranean ozone levels during the hot summer of 2007, Atmospheric Chemistry and Physics. 12(18) (2012) 8727-8750.
DOI: 10.5194/acp-12-8727-2012
Google Scholar