[1]
FAO STAT, (2009). Available: http://faostst.fao.org/site/339/default.aspx. Accessed 2 Dec 2010.
Google Scholar
[2]
N.A. Abbasi et al., Postharvest quality of mango (Mangifera indica L.) fruit as affected by chitosan coating, Pak. J. Bot. 41(1) (2009) 343-357.
Google Scholar
[3]
A. Ali et al., Potential of chitosan coating in delaying the postharvest anthracnose (Colletotrichum gloeosporioides Penz.) of Eksotika II papaya, International journal of food science & technology. 45(10) (2010) 2134-2140.
DOI: 10.1111/j.1365-2621.2010.02389.x
Google Scholar
[4]
S. Bautista-Baños et al., A review of the management alternatives for controlling fungi on papaya fruit during the postharvest supply chain, Crop Protection. 49 (2013) 8-20.
DOI: 10.1016/j.cropro.2013.02.011
Google Scholar
[5]
P. Cia et al., Effects of gamma and UV-C irradiation on the postharvest control of papaya anthracnose, Postharvest Biology and Technology. 43(3) (2007) 366-373.
DOI: 10.1016/j.postharvbio.2006.10.004
Google Scholar
[6]
M. Maqbool et al., Postharvest application of gum arabic and essential oils for controlling anthracnose and quality of banana and papaya during cold storage, Postharvest Biology and Technology. 62(1) (2011) 71-76.
DOI: 10.1016/j.postharvbio.2011.04.002
Google Scholar
[7]
M. Rojas‐Graü et al., The use of packaging techniques to maintain freshness in fresh‐cut fruits and vegetables: a review, International Journal of Food Science & Technology. 44(5) (2009) 875-889.
DOI: 10.1111/j.1365-2621.2009.01911.x
Google Scholar
[8]
S. Jesmin et al., Gamma radiation treated chitosan solution for strawberry preservation: physico-chemical properties and sensory evaluation, International Letters of Natural Science. 60 (2016) 30-37.
DOI: 10.18052/www.scipress.com/ilns.60.30
Google Scholar
[9]
C. Han et al., Effects of chitosan coating on postharvest quality and shelf life of sponge gourd (Luffa cylindrica) during storage, Scientia Horticulturae. 166 (2014) 1-8.
DOI: 10.1016/j.scienta.2013.09.007
Google Scholar
[10]
S. Zhang et al., Effect of ultraviolet irradiation combined with chitosan coating on preservation of jujube under ambient temperature, LWT-Food Science and Technology. 57(2) (2014) 749-754.
DOI: 10.1016/j.lwt.2014.02.046
Google Scholar
[11]
T. Djioua et al., Combined effects of postharvest heat treatment and chitosan coating on quality of fresh‐cut mangoes (Mangifera indica L.), International Journal of Food Science & Technology. 45(4) (2010) 849-855.
DOI: 10.1111/j.1365-2621.2010.02209.x
Google Scholar
[12]
L. Zhan, J. Hu, Z. Zhu, Shelf life extension of minimally processed water caltrop (Trapa acornis Nakano) fruits coated with chitosan, International Journal of Food Science and Technology. 46(12) (2011) 2634-2640.
DOI: 10.1111/j.1365-2621.2011.02794.x
Google Scholar
[13]
Y. Peng, Y. Li, L. Yin, Effects of edible coatings on some quality parameters of Chinese water chestnut (Eleocharis tuberosa) during storage, International Journal of Food Science and Technology. 48(7) (2013) 1404-1409.
DOI: 10.1111/ijfs.12102
Google Scholar
[14]
D. D'Amato, M. Sinigaglia, M.R. Corbo, Use of chitosan, honey and pineapple juice as filling liquids for increasing the microbiological shelf life of a fruit‐based salad, International Journal of Food Science & Technology. 45(5) (2010) 1033-1041.
DOI: 10.1111/j.1365-2621.2010.02233.x
Google Scholar
[15]
G. Kerch, Chitosan films and coatings prevent losses of fresh fruit nutritional quality: A review, Trends in Food Science & Technology. 46(2) (2015) 159-166.
DOI: 10.1016/j.tifs.2015.10.010
Google Scholar
[16]
H.K. No, S.P. Meyers, Preparation of chitin and chitosan, in: Chitin Handbook, Muzzarelli, RAA; M.G. Peter (Ed.), European Chitin Society, 1997.
Google Scholar
[17]
E.I. Rabea et al., Chitosan as antimicrobial agent: applications and mode of action, Biomacromolecules. 4(6) (2003) 1457-1465.
Google Scholar
[18]
R.C. Goy, D.D. Britto, O.B. Assis, A review of the antimicrobial activity of chitosan, Polímeros. 19(3) (2009) 241-247.
DOI: 10.1590/s0104-14282009000300013
Google Scholar
[19]
P. Beaney, J. Lizardi‐Mendoza, M. Healy, Comparison of chitins produced by chemical and bioprocessing methods, Journal of Chemical Technology and Biotechnology. 80(2) (2005) 145-150.
DOI: 10.1002/jctb.1164
Google Scholar
[20]
M.N.R. Kumar, A review of chitin and chitosan applications, Reactive and Functional Polymers. 46(1) (2000) 1-27.
Google Scholar
[21]
K. Kurita, Chitin and chitosan: functional biopolymers from marine crustaceans, Marine Biotechnology. 8(3) (2006) 203.
DOI: 10.1007/s10126-005-0097-5
Google Scholar
[22]
G. Mckay, H.S. Blair, J. R. Gardner, The adsorption of dyes onto chitin in fixed bed columns and batch adsorbers, Journal of Applied Polymer Science. 29(5) (1984) 1499-1514.
DOI: 10.1002/app.1984.070290504
Google Scholar
[23]
K.M. Vårum et al., Determination of the degree of N-acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitins (chitosans) by high-field n.m.r. spectroscopy, Carbohydrate Research. 211(1) (1991) 17-23.
DOI: 10.1016/0008-6215(91)84142-2
Google Scholar
[24]
A. Khanafari, R. Marandi, Sh. Sanatei, Recovery of chitin and chitosan from shrimp waste by chemical and microbial methods, Iranian Journal of Environmental Health Science and Engineering. 5(1) (2008) 19-24.
Google Scholar
[25]
Q. Li et al., Applications and properties of chitosan, Journal of Bioactive and Compatible Polymers. 7(4) (1992) 370-397.
Google Scholar
[26]
Z. Liman, S. Selmi, A. El-abed, Extraction and characterization of chitin and chitosan from crustacean by-products: biological and physico-chemical properties, African Journal of Biotechnology. 10(4) (2011) 640-647.
Google Scholar
[27]
B. Acharya et al., Characterization of chito-oligosaccharides prepared by chitosanolysis with the aid of papain and pronase, and their bactericidal action against Bacillus cereus and E. coli, Biochemical Journal. 391(2) (2005) 167-175.
DOI: 10.1042/bj20050093
Google Scholar
[28]
A.B. Wold et al., Colour of post‐harvest ripened and vine ripened tomatoes (Lycopersicon esculentum Mill.) as related to total antioxidant capacity and chemical composition, International Journal of Food Science & Technology. 39(3) (2004) 295-302.
DOI: 10.1111/j.1365-2621.2004.00784.x
Google Scholar
[29]
M.S. Benhabiles et al., Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste, Food Hydrocolloids. 29(1) (2012) 48-56.
DOI: 10.1016/j.foodhyd.2012.02.013
Google Scholar
[30]
M.S. Benhabiles et al., Assessment of coating tomato fruit with shrimp shell chitosan and N, O-carboxymethyl chitosan on postharvest preservation, Journal of Food Measurement and Characterization. 7(2) (2013) 66-74.
DOI: 10.1007/s11694-013-9140-9
Google Scholar
[31]
S. Bautista-Baños, R. González-Soto, M.D.L.R. Garcia, Physical properties of chitosan films with lemon essential oil added and their impact on the shelf life of tomatoes (Licopersicon esculentum L.), Revista Mexicana de Ingeniería Química. 17(1) (2017) 1-11.
DOI: 10.24275/uam/izt/dcbi/revmexingquim/2018v17n1/bautista
Google Scholar
[32]
K.M. Moneruzzaman et al., Effect of harvesting and storage conditions on the post harvest quality of tomato (Lycopersicon esculentum Mill) cv. Roma VF, Australian Journal of Crop Science. 3(2) (2009) 113.
Google Scholar
[33]
T.U. Rashid et al., A new approach for the preparation of chitosan from γ‐irradiation of prawn shell: effects of radiation on the characteristics of chitosan, Polymer International. 61(8) (2012) 1302-1308.
DOI: 10.1002/pi.4207
Google Scholar