Relationship between Nematodes and some Soil Properties in the Rhizosphere of Banana Plants

Article Preview

Abstract:

Nematodes are plant-parasitic organisms that cause alterations in the chemical and physical environment of soils. This study investigates the relationship between nematode occurrence and some soil parameters. The results showed that the proportion of nematodes in soil was negatively correlated with soil pH (r2= 0.89); however, it increased with increasing electrical conductivity (EC) (r2 = 0.95), soil moisture (SM) (r2 = 0.60), and organic matter (OM) content (r2= 0.78). A positive correlation was found between the proportion of nematodes in the roots and the amount of coarse sand, while a negative correlation existed between the proportion of nematodes and the amount of fine sand, clay, and silt. The degree of colonization by nematodes increased with increasing coarse sand content (r2= 0.91). Conversely, the soil nematode population decreased with increasing fine sand content (r2= 0.83), clay (r2= 0.80), and silt content (r2= 0.97). The nematode population in banana roots correlated with soil phosphorus (r2 = 0.88), potassium (r2 = 69), calcium (r2 = 0.78), and magnesium levels (r2=0.78). Conversely, a negative correlation was found between nitrogen concentration and the nematode population in banana roots (r2=0.76). Overall, the population of nematodes in soil affects its pH, EC, SM, and OM content.

Info:

* - Corresponding Author

[1] Al-Yamani, M.N., AL- Desoki, R.A. (2006): Plant and Environmental factors- Practical. – Scientific Publishing and Printing Press, King Saud University, Riyadh. (In Arabic).

Google Scholar

[2] Arnold, W.S., Tripti, V., Spann, T.M. (2010): Mineral nutrition contributes to plant disease and pest resistance. University of Florida, Institute of Food and Agricultural Sciences. –Extension publication HS1181, Gainesville, Florida.

DOI: 10.32473/edis-hs1181-2010

Google Scholar

[3] Auwerkerken, A., Dubois, T., De Schutter, B., Speijer, P., Rotimi, O., De Waele, D., Coyne, D., Tenkouano, A. (2005): Effects of nematode infection and mulching on the yield of plantain (Musa spp., AAB-group) ratoon crops and plantation longevity in southeastern Nigeria. – J Nematol 7: 531–541.

DOI: 10.1163/156854105774384796

Google Scholar

[4] Berg, M.P., Bengtsson, J. (2007): Temporal and spatial variability in soil food web structure. – Oik J 116: 1789-1804.

DOI: 10.1111/j.0030-1299.2007.15748.x

Google Scholar

[5] Berry, S., Cadet, P., Spaull, VW. (2005): Effect of certain cultural practices on nematode management in a smallscale farming system. – SASTA 79:149-164.

Google Scholar

[6] Bwamiki, D.P. (2004): Role of plant nutrition on growth parameters of banana and the suppression of populations and damage of Radopholus similis. Dissertation, – Cornell University, Ithaca, NY, USA.

Google Scholar

[7] Cadet, P., Berry, S., Spaull, V. (2004): Mapping of interactions between soil and nematodes. –Eur J Soil Bio 40: 77-86.

DOI: 10.1016/j.ejsobi.2004.07.002

Google Scholar

[8] Cadet, P., Spaull, V.W. (2003): Effect of nematodes on sustainability of sugarcane production in South Africa. – Fie Crops Res 83: 91-100.

DOI: 10.1016/s0378-4290(03)00066-2

Google Scholar

[9] Cardoso, M.O., Pedrosa, E.M.R., Rolim, M.M., Silva, E.F.F., Barros, P.A. (2012): Effects of soil mechanical resistance on nematode community structure under conventional sugarcane and remaining of Atlantic Forest. – Environ Monit Assess 184: 3529-3544.

DOI: 10.1007/s10661-011-2206-4

Google Scholar

[10] Castro, C., Belser, N.H., McKinney, I. (1990): Thomason, Strong repellency of the root knot nematode, Meloidogyne incognita by specific inorganic ions. – J Chem Ecol 16:1199-1205.

DOI: 10.1007/bf01021019

Google Scholar

[11] Chen, S.Y., Sheaffer, C.C., Wyse, D.L., Nickel, P., Kandel, H. (2012): Plant-parasitic nematode communities and their associations with soil factors in organically farmed fields in Minenesota. – J Nematol 44: 361–369.

Google Scholar

[12] Conklin, A.R. (2005): Introduction to Soil Chemistry. Analysis and Instrumentation, 3rd Edition, Hoboken: – John Wiley and Sons, p.218.

Google Scholar

[13] Coyne, D.L., Cortada, L., Dalzell, J.J., Claudius-Cole, A.O., Haukeland, S., Luambano, N., Talwana, H. (2018): Plant-Parasitic Nematodes and Food Security in Sub-Saharan Africa. – Ann Rev Phytopathol 56: 381–403.

DOI: 10.1146/annurev-phyto-080417-045833

Google Scholar

[14] Dabiré, R.K., Ndiaye, S., Mounport, D., Mateille, T. (2007): Relationships between abiotic soil factors and epidemiology of the biocontrol bacterium Pasteuria penetrans in a root-knot nematode Meloidogyne javanica-infested field. – Bio Con 40: 22-29.

DOI: 10.1016/j.biocontrol.2006.08.001

Google Scholar

[15] Davide, R.G. (1980): Influence of cultivar, age, soil texture, and pH on Meloidogyne incognita and Radopholus similis on banana. –Plant Dis J 64:571-573.

DOI: 10.1094/pd-64-571

Google Scholar

[16] De Barros, P.Â., Pedrosa, E.M.R., Cardoso, M.S.D.O., Rolim, M.M. (2017): Relationship between soil organic matter and nematodes in sugarcane fields. – Semin Cienc Agrar 38: 551-560.

DOI: 10.5433/1679-0359.2017v38n2p551

Google Scholar

[17] Delvaux, B. (1995): Soils. In: Gowen, SR (eds) Bananas and Plantains. – Chapman and Hall. London, pp.230-257.

DOI: 10.1007/978-94-011-0737-2_10

Google Scholar

[18] Dropkin, V.H. (1980): Introduction to plant nematology. – In: John Wiley- Intern Science, New York, USA, p.293.

Google Scholar

[19] Fajardo, M.P., Aballay, E.E., Casanova, M.P. (2011): Soil properties influencing phytoparasitic nematode population on Chilean vineyards, – Chil J Agric Res 71: 240.

DOI: 10.4067/s0718-58392011000200009

Google Scholar

[20] Fiscus, D.A., Neher, D.A. (2002): Distinguishing sensitivity of free-leaving soil nematode genera to physical and chemical disturbances. – Eco App 12: 565-575.

DOI: 10.1890/1051-0761(2002)012[0565:dsofls]2.0.co;2

Google Scholar

[21] Frison, E.A., Sharrock, S.L. (1999): Biodiversity and Sustainable Banana Production. – International Network for the Improvement of Banana and plantain, France.

Google Scholar

[22] Gaidashova, S.V., Van Asten. P., De Waele, D., Delvaux, B. (2009): Relationship between soil properties, crop management, plant growth and vigour, nematode occurrence and root damage in East African Highland banana-cropping systems: a case study in Rwanda. – Nemat 11:883 – 894.

DOI: 10.1163/156854109x430310

Google Scholar

[23] Gade, R.B., Hiware, C.J. (2017): Studies on the Soil Nematode Diversity in Relation to the Soil Parameters from Sugarcane Fields of Aurangabad District Maharashtra State, India. –International IJRASET 5:1632-1640.

DOI: 10.22214/ijraset.2017.9238

Google Scholar

[24] Gebremikael, M., Steel, H., Buchan, D. (2016): Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions. – Sci Rep 6: 32862.

DOI: 10.1038/srep32862

Google Scholar

[25] Gowen, S.R. (1995): Pests. In: Gowen, SR (eds) Bananas and Plantains. – Chapman and Hall. London, UK, p.599.

DOI: 10.1007/978-94-011-0737-2_13

Google Scholar

[26] Griffin, G.D. (1996): Importance of soil texture to the pathogenicity of plant-parasitic nematodes on rangeland grasses. –Nematropica 26: 27–37.

Google Scholar

[27] Hesse, P.R. (1971): A Text Book of Soil Chemical Analysis. –John Murray, London.

Google Scholar

[28] Hooper, D.J. (1990): Extraction and processing of plant and soil nematodes. In: Luc, M., Sikora, R.A., Bridge, J. (eds) Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. – CAB International, Wallingford, UK. pp.45-68.

DOI: 10.1071/app9900146

Google Scholar

[29] Kabata-Pendias, A. (2000): Trace Elements in Soils and Plants, 3rd Edition. – CRC Press.

Google Scholar

[30] Kade,r M.A., Senge, M., Mojid, M.A., Nakamura, K. (2017): Mulching type-induced soil moisture and temperature regimes and water use efficiency of soybean under rain-fed condition in central Japan. – Int Soil Water Cons Rese 5: 302–308.

DOI: 10.1016/j.iswcr.2017.08.001

Google Scholar

[31] Kandji, S.T., Ogol, C.K.P.O., Albrecht, A. (2001): Diversity of plant-parasitic nematodes and their relationships with some soil physico-chemical characteristics in improved fallows in western Kenya. – App Soil Eco 18: 143-157.

DOI: 10.1016/s0929-1393(01)00157-3

Google Scholar

[32] Kim, Y.H. (2015): Predatory nematodes as biocontrol agents of phytonematodes. In: Askary, T.H., Martinelli, P.R.P. (eds) Biocontrol agents of phytonematodes. – CABI, Oxfordshire, UK, pp.393-420.

DOI: 10.1079/9781780643755.0393

Google Scholar

[33] Kim, E., Seo, Y., Kim, Y.S., Park, Y., Kim, Y.H. (2017): Effects of Soil Textures on Infectivity of Root-Knot Nematodes on Carrot. –Plant Path J 33: 66–74.

DOI: 10.5423/ppj.oa.07.2016.0155

Google Scholar

[34] Kincaid, R.R., Martin, F.G., Gammon, N., Breland, H.L., Pritchett, W.L. (1970): Multiple regression of tobacco black shank, root-knot and coarse root indexes on soil pH, potassium, calcium and magnesium. –Phyto J 60: 1513-516.

DOI: 10.1094/phyto-60-1513

Google Scholar

[35] Koenning, S.R., Walters, S.A., Barker, K.R. (1996): Impact of soil texture on the reproductive and damage potential of Rotylenchulus reniformis and Meloidogyne incognita on cotton. – J Nematol 28: 527-536.

Google Scholar

[36] Mangat, B.P.S., Sharman, N.K. (1981): Influence of Host Nutrition on Multiplication and Development of Citrus Nematode. – Ind Phyto 34: 90-91.

Google Scholar

[37] Mcsorley, R. (1987): Extraction of nematodes and sampling methods. In: Brown, R.H., Kerry, B.R. (eds) Principles and Practices of Nematode Control in Crops. –Academic Press, Marrickville, NSW, Australia, pp.13-47.

Google Scholar

[38] Moore, S.R., Lawrence, K.S. (2013): The effect of soil texture and irrigation on Rotylenchulus reniformis and cotton. – J Nematol 45: 99–105.

Google Scholar

[39] O'Bannon, J.H., Essar, R.P. (1985): Citrus Declines Caused by Nematodes in Florida. I. Soil Factors. – Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Nematol. Circular No. 14, p.4.

Google Scholar

[40] Oka, Y., Tkachi, N., Shuker, S., Rosenberg, R., Suriano, S., Fine, P. (2006): Laboratory Studies on the Enhancement of Nematicidal Activity of Ammonia-releasing Fertilizers by Alkaline Amendments. – J Nematol 8: 335-346.

DOI: 10.1163/156854106778493466

Google Scholar

[41] Pen-Mouratov, S.H.U. C., Hindin, E., Steinberger, Y. (2010): Effect of sand-dune slope orientation on soil free-living nematode abundance and diversity. – Helminthologia 47: 179-188.

DOI: 10.2478/s11687-010-0027-6

Google Scholar

[42] Pettigrew, W.T., Meredith, W.R. Young, L.D. (2005): Potassium Fertilization Effects on Cotton Lint Yield, Yield Components, and Reniform Nematode Populations. – Agro J 7: 1245-1251.

DOI: 10.2134/agronj2004.0321

Google Scholar

[43] Rodriguez-Kábana, R. (1986): Organic and Inorganic Nitrogen Amendments to Soil as Nematode Suppressants. – J Nemato 18: 129- 135.

Google Scholar

[44] Roux, N., Baurens, F.C., Dolez,el. J., Hribová, E., Heslop-Harrison, P., Town, C., Sasaki, T., Matsumoto, T., Aert, R., Remy, S., Souza, M., Lagoda, P. (2008): Genomics of banana and plantain (Musa spp.), major staple crops in the tropics. In: Moore, P.H., Ming, R. (eds) Genomics of tropical crop plants, Springer, pp.83-111.

DOI: 10.1007/978-0-387-71219-2_4

Google Scholar

[45] Sarah, J.L., Osséni, B., Hugon, R. (1991): Effect of soil pH on development of Pratylenchus brachyurus populations in pineapple roots. – Nematropica 21: 211- 216.

Google Scholar

[46] Sorribas, F.J., Verdejo-Lucas, S., Pastor, J., Ornat, C., Pons, J., Valero, J. (2008): Population Densities of Tylenchulus semipenetrans Related to Physicochemical Properties of Soil and Yield of Clementine Mandarin in Spain. – Plant Dis J 92: 445-450.

DOI: 10.1094/pdis-92-3-0445

Google Scholar

[47] Speijer, P.R., Fogain, R. (1999): Musa and Ensete nematode pest status in selected African countries. In: Frison, E.A., Gold, C.S., Karamura, E.B., Sikora, R.A. (eds) Mobilizing IPM for sustainable banana production in Africa. Proceedings of a workshop on banana IPM held in Nelspruit, South Africa, 23-28 November 1998. –Montpellier, France, Inibap, pp.99-108.

Google Scholar

[48] Spejier, P.R., Kajumba, C., Ssango, F. (1999): East African highland banana production as influenced by nematodes and crop management in Uganda. – Int J Pest Man 45: 41-49.

DOI: 10.1080/096708799228030

Google Scholar

[49] Stigter, S.J. (1984): Traditional use of shade: a method for microclimate manipulation. Archives for Meteorology, – Geo Bio Ser B34: 203-210.

DOI: 10.1007/bf02275684

Google Scholar

[50] Szczygieł, A., Soroka, A., Zepp, A. (1983): Effect of soil texture on population and pathogenicity of Meloidogyne hapla, Pratylenchus penetrans and Longidorus elongatus to strawberry plants.  – Zesz Probl Postęp Nauk Rol 278: 77–86.

Google Scholar

[51] Szczygieł, A., Zepp, A. (2004): The association of plant parasitic nematodes with fruit crops in Poland as related to some soil properties. – Fragm Faun 47: 7–33.

DOI: 10.3161/00159301ff2004.47.1.007

Google Scholar

[52] Talwana, H.A.L., Speijer, P.R., Gold, C.S., Swennen, R.L., De Waele. D. (2003): A comparison of the effects of the nematodes Radopholus similis and Pratylenchus goodeyi on growth, root health and yield of an East African highland cooking banana (Musa AAA-group). – Int J Pest Manage 49:199-204.

DOI: 10.1080/0967087031000085033

Google Scholar

[53] Van Gundy, S.D., Martin, G.P., Tsao, P.H. (1964): Some Soil Factors Influencing Reproduction of Citrus Nematode and Growth Reduction of Sweet Orange Seedlings. – Phyto J 54: 294-299.

Google Scholar

[54] Van Lierop, W. (1988): Determination of available phosphor using acid and calcareous soils with the Kewlona multi-element extractants. – Soil Sci 146: 284-291.

DOI: 10.1097/00010694-198810000-00009

Google Scholar

[55] Wang, K.H., Hooks, C.R.R. (2009): Plant-parasitic nematodes and their associated natural enemies within banana (Musa spp.) plantings in Hawaii. – Nem 39: 57-73.

Google Scholar

[56] Wang, K.H., McSorley, R. (2005): Effects of soil ecosystem management on nematode pests, nutrient cycling, and plant health, – APSnet 2005-0105.

DOI: 10.1094/apsnetfeatures/2005-0105

Google Scholar

[57] Watt, M., Kirkegaard, J.A., Passioura, J.B. (2006): Rhizosphere biology and crop productivity – A review. – Aust J Soil Res 44: 299-317.

DOI: 10.1071/sr05142

Google Scholar

[58] Wilde, S.A., Voigt, G.K., Iyer, J.G. (1972): Part 1: Analysis of physical properties of soils. In: Soil and Plant Analysis for Tree Culture. 4th Edition. Oxford and IBH Publishing Co. – New Delhi, pp.6-34.

DOI: 10.2136/sssaj1973.03615995003700020008x

Google Scholar

[59] Yeates, G.W. (2003): Nematodes as soil indicators: functional and biodiversity aspects. – Bio Fert Soils 37:199-210.

DOI: 10.1007/s00374-003-0586-5

Google Scholar

[60] Yousef, A.F. (1999): Analysis methods and devices for soil and water. – King Saud University, Riyadh. (In Arabic).

Google Scholar