Phytochemical Properties of Roselle (Hibiscus sabdariffa, L.) Plants Grown under Bio and Mineral Fertilizers in Different Types of Soil

Article Preview

Abstract:

The aim of this study was to clarify the phytochemical property evaluation of Roselle plants grown under bio Azotobacterine (Azotobacter chroococcum) and phosphorein (Bacillus polymyxa) and mineral (N, P and K fertilizers at the rates of 25, 50 and 100% from the doses recommended by Ministry of Agriculture) fertilizers applied in different types of soil. Samples of Roselle plants were obtained from different soils (clay soil at Dar El-Ramad farm, sandy loam and saline loamy sand soil at Demo farm, Faculty of Agriculture) at El-Fayoum governorate conditions. Moreover, some of the phytochemical properties (N, P and K percentage in roselle herb and its uptake, photosynthetic pigments (chlorophyll A, chlorophyll B and carotenoids), anthocyanin pigment and pH value) of roselle plants (Hibiscus sabdariffa, L.) under different soils were determined. The data obtained showed that, bio and mineral (NPK) fertilizers increased the above compositions of roselle plants under different soils of experiment. The maximum increase of these compositions was obtained by the treatment clay soil × 100% NPK + bio fertilizers, followed by clay soil × 50% NPK + bio fertilizers as compared to saline loamy sand soil × non fertilizer treatment, although, the differences between these treatments and mineral fertilizer at the rate of 100% NPK alone were insignificantly. Therefore, it is economically and environmentally recommended to inoculate roselle seeds with mixture of Azotobacter + Bacillus and fertilize these inoculated plants with 50% NPK for improve chemical compositions (N, P and K percentage in roselle herb and its uptake, photosynthetic pigments (chlorophyll A, chlorophyll B and carotenoids), anthocyanin pigment and pH value) of roselle plants under clay soil. Key words: Roselle, Hibiscus sabdariffa L., nitrogen, phosphorus, potassium, biofertilization, soil type, salinity, chemical composition.

Info:

* - Corresponding Author

[1] Mahadevan, N., R. Shivali, P. Kamboj (2009). Hibiscus subdariffa Linn. - An overview. Nat. Prod. Rad., 8(1): 77-83.

Google Scholar

[2] Copley, L.S. (1975). An introduction to the botany of tropical crops. Longman Group, U.K.

Google Scholar

[3] Ahmed, A.H.R. and A.M. Nour (1981). Promising Karkade seed derivatives: Edible oil and karkade, Annual Report, Food Research Center. Shambat, Sudan.

Google Scholar

[4] Tewari, S. and N.K.n Arora (2016). Fluorescent Pseudomonas sp. PF17 as an efcient plant growth regulator and biocontrol agent for sunflower crop under saline conditions. Symbiosis 68: 99–108.

DOI: 10.1007/s13199-016-0389-8

Google Scholar

[5] Arora, N.K., M. Verma, J. Prakash, J. Mishra (2016). Regulation of biopesticides: global concerns and policies. In: Bioformulations for sustainable agriculture. Springer, New Delhi, p.283–299.

DOI: 10.1007/978-81-322-2779-3_16

Google Scholar

[6] Shaheen A.M., A.n Rizk Fatma , M. Omiama Sawan, A.A. Ghoname (2007). The integrated use of Bio-inoculants and chemical nitrogen fertilizer on growth, yield and nutritive value of two okra (Abelmoschus Esculentus, L.).cultivars. Australian Journal of Basic and Applied Sciences, 1(3): 307-312.

Google Scholar

[7] Ahmad, M. Ahmad, I., T.H. Hilger, S.M. Nadeem, M.F. Akhtar, M. Jamil, A. Hussain, Z.A. Zahir (2018). Preliminary study on phosphate solubilizing Bacillus subtilis strain Q3 and Paenibacillus sp. strain Q6 for improving cotton growth under alkaline conditions. Peer J 6:e5122

DOI: 10.7717/peerj.5122

Google Scholar

[8] Segura, L.G.C. and K.M.R., Sialongo (2005). Bio-N fertilizer application on the growth and yield of sweet corn (Zea mays var.rogu sa). A special project presented to the faculty of crop science unit college of agriculture, xavier university in partial fulfillment of the requirement for the course Agri. 124.Online.

Google Scholar

[9] Khalil, M.A. I., A. A. M. Mohsen, M.K. Abdel-Fattah (2016).Effect of Bio and Mineral Nitrogen Fertilization on Growth, Yield and Quality of Lettuce Plants under Sandy Soil Conditions. Middle East Journal of Applied Sciences 6(2):411-417.

Google Scholar

[10] Abdel-Nabi, H. M. A., K. D. Kawther, E. I. El-Gamily, Y. F. E. Imryed (2016). Impact of mineral, organic and bio fertilization on growth, yield and quality of cantaloupe. J. Plant Production, Mansoura Unv. (11): 1777-1794.

DOI: 10.21608/jpp.2014.64719

Google Scholar

[11] Gawali, R., R. Shila, P.K. Unni (2018). Integrated Nutrient Management Approach on Wheat (Triticum aestivum L.) in Vertisols Int. J. Curr. Microbiol. App. Sci. 7(4): 3144-3153.

Google Scholar

[12] Singh, D. Y.V. and S. Tyagi (2019). Effect of Biofertilizer, Herbicide Application and Nitrogen Management on Growth, Productivity of Wheat (Triticum aestivum L.). Int.J.Curr.Microbiol. App.Sci (2019) 8(4): 2712-2719.

DOI: 10.20546/ijcmas.2019.804.315

Google Scholar

[13] Hammad, K. H. A. and H. A. Hussein (2016). Effect of NPK and chicken manure on the growth productivity and som growth components of squash (Cucurbita pepo L.). ARPN J. of Agric. And Bio sci. 11(6): 230-235.

Google Scholar

[14] El-Araby, S. M., I. M. Ghoneim, A. I. Shehata, R. A. Mohamed (2003). Effect of nitrogen, organic manure and biofertilizer applications on strawberry plants. 1- Vegetative growth, flowering and chemical constituents of leaves. J. Agric. & Env. Sci. Alex. Univ. Egypt. 2 (2): 36-62.

Google Scholar

[15] Martínez, J.M., J.A. Galantini, M.E. Duval, (2018). Contribution of nitrogen mineralization indices, labile organic matter and soil properties in predicting nitrogen mineralization. J. Soil Sci. Plant Nutr. 18: 73–89.

DOI: 10.4067/s0718-95162018005000401

Google Scholar

[16] Aranguren, M., A.N Castellón, A.n Aizpurua (2018). Topdressing nitrogen recommendation in wheat after applying organic manures: The use of field diagnostic tools. Nutr. Cycl. Agroecosyst. 110: 89–103.

DOI: 10.1007/s10705-017-9865-7

Google Scholar

[17] Siddiqui, M.H., F. Chandoad, M.K. Abbasi, A.W. Yogandahi (2009).Effect of NPK, micronutrients and n-placement on the growth and yield of sunflower. Sarhad J. Agric., 25(1): 45-52.

Google Scholar

[18] Khan, A.A., G. Jilani, M.S. Akhtar, S.M. Naqvi, M. Rasheed (2009). Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J. Agric. Biol. Sci. 1 (1):48-58.

Google Scholar

[19] El-Ganaini, S.S. (2009). Effect of phosphorus and some micronutrients fertilizers on growth, yield and some chemical constituents of sunflower (Helianthus annuus L.) plants grown under reclaimed soil conditions. Fayoum J. Agric. Res. & Dev., 23 (2):94-107.

DOI: 10.21608/fjard.2009.197064

Google Scholar

[20] El-Nagdy, G.A., D. M. Nassar, E.A. El-Kady, G. S. El-Yamanee (2010). Response of flax plant (Linum usitatissimum L.) to treatments with mineral and bio-fertilizers from nitrogen and phosphorus. Journal of American Science, 6(10):207-217.

Google Scholar

[21] Yosefi1, K., M. Galavi1, M. Ramrodi, S.R. Mousavi (2011). Effect of bio-phosphate and chemical phosphorus fertilizer accompanied with micronutrient foliar application on growth, yield and yield components of maize (Single Cross 704). AJCS,5(2):175-180.

DOI: 10.5539/jas.v3n4p22

Google Scholar

[22] Ragab, T. (2016). Magesium and phosphorien application improve the efficiency of growth and productivity of squash plants grown on sandy calcareous soil. J. of Advanced Botany and zoology (4): 1-6.

Google Scholar

[23] Baliah,T. N.and A.S. Priya (2017).Effect of bioformulations of Phosphate Solubilizing Bacteria (PSB) on the Growth and Biochemical Characters of the Gossypium Hirsutum and Zea Mays. International Journal of Environment, Agriculture and Biotechnology (IJEAB), 2 (6): 3229-3236.

DOI: 10.22161/ijeab/2.6.58

Google Scholar

[24] Zheng, B.X., M. Ibrahim, D.P. Zhang, Q.F. Bi, H.Z. Li, G.W. Zhou, K. Ding, J. Peñuelas, Y.G. Zhu, X.R. Yang (2018). Identification and characterization of inorganic-phosphate-solubilizing bacteria from agricultural fields with a rapid isolation method. AMB, Expr. 8(47): 2-12.

DOI: 10.1186/s13568-018-0575-6

Google Scholar

[25] Li, H., X. Ding, C. Chen, X. Zheng, H. Han, C. Li, J. Gong, T. Xu, Q. X. Li, G. C. Ding, J. Li, (2019).Enrichment of phosphate solubilizing bacteria during late developmental stages of eggplant (Solanum melongena L.). FEMS Microbiology Ecology 95(3)pii: fiz023. doi: 10.1093/femsec/ fiz023.

DOI: 10.1093/femsec/fiz023

Google Scholar

[26] Prakash, J. and N. Arora (2019). Phosphate-solubilizing Bacillus sp. enhances growth, phosphorus uptake and oil yield of Mentha arvensis L. 3 Biotech 9(126):1-9. https://doi.org/.

DOI: 10.1007/s13205-019-1660-5

Google Scholar

[27] Allen, O. N. (1971). Experimentals in Soil Bacteriology. Burgess Publishing, Minneapolis, Minnesota, USA.

Google Scholar

[28] Parkinson, J. A. and S. E. Allen (1975) A wet oxidation process suitable for the determination of nitrogen and mineral nutrients in biological material.

Google Scholar

[29] Jackson, M. L. (1973). Soil Chemical Analysis. Prentice- Hall., Inc. Englewood Claiffs, New Jersey, USA.

Google Scholar

[30] Page, A. I., R. H. Miller, D. R. Keeney (Eds). (1982). Methods of Soil Analysis, part- 2. Chemical and Microbiological Properties. 2nd (Ed). American Society of Agronomy, Madison, Wisconsin. USA.

Google Scholar

[31] Hafez, A. R. and O. S. Mikkelsen (1981). Colorimetric determination of nitrogen for evaluating the nutritional status of rice. Communications Soil Science and Plant Analysis, 12 (1): 61-69.

DOI: 10.1080/00103628109367127

Google Scholar

[32] Diab, M. A. (1968). The chemical composition of Hibiscus sabdariffa L. M. Sc. Thesis, Fac. Agric., Cairo Univ.

Google Scholar

[33] Fahmy, R. (1970). "Different Quantitative Estimations of Some Organic Compounds in Plants" pp.72-73 (in Arabic), Anglo Egypt. Press, Cairo, Egypt.

Google Scholar

[34] Cherry, J. H. (1973). Molecular Biology of Plants (A text manual). Columbia Univ. Press. New York.

Google Scholar

[35] Snedecor, W. C. and W. G. Cochran (1980). Statistical Methods. 7th ed. The Iowa state Univ. Press, Ames, Iowa USA.

Google Scholar

[36] Moawad, H. M. H. (2005). Effect of phosphorus and potassium fertilization on growth, yield and resistance of wheat plant to pathogens under Fayoum governorate conditions. M. Sc. Thesis, Fac. Agric. Fayoum Univ., Egypt.

Google Scholar

[37] El-Saidi, M. T. and M. Hawash (1971). Effect of using saline water for irrigation on the growth and chemical properties of roselle plants (Hibiscus sabdariffa, L.). Z. Acher Und Pflanzen bau, 134: 251-256.

Google Scholar

[38] Strogonov, B. P. (1962). Physiological basis of salt tolerance of plants. Academy of Special Science of USSR, Instituted of Plant Physiology. English Translation by Israel Program for Scientific Translation, 2964.

Google Scholar

[39] Lapina, L. P. (1966). Effect of high iso-aromatic compounds on nitrogen and carbohydrate metabolism in maize. Sov. Plant Physiol. 13, 1029.

Google Scholar

[40] Parida, A. K. and A. B. Das (2005). Salt tolerance and salinity effects on plants: a review, Ecotoxicol. Environ. Safety 60, 324–349.

DOI: 10.1016/j.ecoenv.2004.06.010

Google Scholar

[41] Sharpley, A. N., J. J. Meisinger, J. F. Power, D. L. Suarez (1992). Root extraction of nutrients associated with long-term soil management, advances springer- Verlag, 151-217.

DOI: 10.1007/978-1-4612-2894-3_6

Google Scholar

[42] Damke, M. M. and S. K. Bhattacharjee (1997). Influence of NPK fertilization on flower yield and seasonal in leaf nutrient content of rose cv. Super Star. PKV research J. 21 (1): 39-43. (C. F. Hort. Abst. 68 (4): 3387).

Google Scholar

[43] Lambers, H., F. S. Chapin, T. L. Pons (2000). Plant Physiological Ecology. Spring –Verleg, New York. Inc.

Google Scholar

[44] Abou El-Seoud, M. A., M. F. Abd El-Sabour, E. A. Orner (1997). Productivity of roselle plant (Hibiscus sabdariffa, L.) as affected by organic waste composts addition to sandy soil Bull. Natl. Res. Center, Cairo, Egypt, 22: 495-505.

DOI: 10.1108/09566169710180740

Google Scholar

[45] Pandey, S. N. and B. K. Sinha (1978). Plant Physiology 2nd revised ed., p.362.

Google Scholar

[46] Hartmann, A. (1989). Ecological aspects of growth and nitrogen fixation with of Azospirillum (C.F. Nitrogen fixation with Non-Legumes by Shiner et al.,123-136, Kluwer Acad. Publ., Dordrecht, Netherlands.

DOI: 10.1007/978-94-009-0889-5_16

Google Scholar

[47] Hegde, D. M., B. S. Dwivedi, B. S. S. Sudhakara (1999). Biofertilizers for cereal production in Indian. A review. Indian J. Agric. Res., 69 (2): 73-83.

Google Scholar

[48] Bashan, Y. and H. Levanony (1990). Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can. J. microbial, 36: 591-608.

DOI: 10.1139/m90-105

Google Scholar

[49] Follett, R. H., L. S. Murphy, R. L. Dorahue (1981). Fertilization and Soil Amendments. Pretice-Hall. Inc. Inglewood Cliffs, New Jersey, 07632, USA.

Google Scholar

[50] Kenawy, A. G. M. (2005). Effect of some biofertilization treatments on the growth, yield and chemical composition of Hibiscus sabdariffa L. plants. M. Sc. Thesis, Fac. of Agric. Minia Univ.

Google Scholar

[51] Subba Rao, N. S. (1984). Biofertilizers in Agriculture Oxford. IBH Company. New Delhi.

Google Scholar

[52] Gaudry, J. F. M. (2001). Nitrogen assimilation by plants: physiological, bacterial and molecular aspects. Published by science publishers, Inc. Enfield, NH, USA, pp.185-197.

Google Scholar