Chromium Toxicity in Sesbania sesban (L.) Merr

Article Preview

Abstract:

Chromium is one of the most common toxic metals present in the environment that induces various toxic effects in plants. A pot experiment was conducted to determine the effects of chromium on germination percentage, seedling growth, chlorophyll ‘a’, ‘b’ and proline content of Sesbania sesban (L.) Merr. The seedlings were treated with different concentrations of control, 0.10, 0.25, 0.50, 0.75 and 1.00 g kg-1 of chromium. The parameters such as germination percentage, root and shoot length, seedling fresh weight dry weight, chlorophyll ‘a’, ‘b’ and proline content of leaves were measured. Our results indicated that a significant inhibitory effect was observed at all levels of chromium compared to control. Increasing the concentration of chromium to 1.00 g kg-1 showed a significant decrease in seed germination, shoot and root length, fresh weight, dry weight and chlorophyll ‘a’ and ‘b’ content of plant. While proline, catalase and peroxidase contents were increased by increasing Cr concentration. It was also noted that accumulation of chromium in the roots was much higher than the shoots of the seedlings under treatment.

Info:

Pages:

66-75

Citation:

Online since:

February 2014

Export:

Share:

Citation:

* - Corresponding Author

[1] Alia P., Matysik J., J. Plant. Physiol. 138 (1991) 554-558.

Google Scholar

[2] Alloway B. J., Indian J Plant Physiol. 5 (1990) 228-231.

Google Scholar

[3] Avudainayagam S., Megharaj M., Owens G., Kookana R. S., Chittleborough D., Naidu R., Reviews of Environmental Contamination and Toxicology 178. (2003) 53-91.

DOI: 10.1007/0-387-21728-2_3

Google Scholar

[4] Bates L., Waldren R. P., Teare I., Plant. Biol. Plant. (1973) 111-115.

Google Scholar

[5] CEI: Soil remediation technologies: assessment, clean-up, decommissioning, rehabilitation. Canadian Environmental Industries (Energy and Environmental Industries Branch) (2005), available at: http://www.ic.gc.ca/eic/site/eaae.nsf/eng/ea02201.html.

Google Scholar

[6] De Filippis L. F., Ziegler H., J. Plant Physiol. 142 (1993) 167-172.

Google Scholar

[7] Evangelou V. P., Environmental Soil and Water Chemistry Principles and Applications. New York: John Wiley & Sons, Inc. 1998.

Google Scholar

[8] Jain R., Srivastava S., Madan V. K., Jain R., Joshi U. N., Rathore S. S., Arora S. H., IJEP 19 (1999) 745.

Google Scholar

[9] Kabata-Pendias A. D., Pendias H., Trace elements in soils and plants, CRC Press, London 2001.

DOI: 10.1201/b10158

Google Scholar

[10] Kumar K. B., Khan P. A., Ind J Exp Bot. 20 (1982) 412-416.

Google Scholar

[11] Kuzentsov W., Shevyakova N. L., Physiol. Plantarum. 101 (1997) 477-482.

Google Scholar

[12] Lichtenthaler H. K, Wellburn A. R., Biochem Soc Trans 11 (1983) 591-592.

Google Scholar

[13] Maehly A. C., Chance B., The assay of catalase and peroxidase. In: Methods of biochemical analysis. Vol. 1 (Glick, D.Ed.), Inter Science Publishers. inc., New York 1959, pp.357-425.

Google Scholar

[14] Mertz W., Trace elements in human and animal nutrition. San Diego, California: Academic Press, fifth ed., 1987, Vol. 1-2.

Google Scholar

[15] More T., 1974. Research experiences in Plant Physiology,Speringer-Verlag, New York.

Google Scholar

[16] Parr P. D., Taylor F. G., Environ Int. 7 (1982)197-202.

Google Scholar

[17] Peralta J. R., Gardea Torresdey J. L., Tiemann K. J., Gomez E., Arteaga S., Rascon E., Environ Contam Toxicol. 66(6) (2001) 727-734.

Google Scholar

[18] Reddy A. M., Kumar S. G., Jyonthsnakumari G., Thimmanaik S., Sudhakar C., Chemosphere. 60 (2005) 97-104.

Google Scholar

[19] Rellen-Alvarez R., Ortega-Villasante C., Alvarez-Fernandez A., del Campo F. F., Hernandez L. E., Plant Soil 279 (2006) 41-50.

Google Scholar

[20] Rout G. R., Sanghamitra S., Das P., Chemosphere 40 (2000) 855-859.

Google Scholar

[21] Shanker A. K., Cervantes C., Loza-Tavera H., Avudainayagam, S., Environ. Int. 31 (2005) 739-753.

Google Scholar

[22] Shaw B. P., Biol Plant. 37 (1995) 587-596.

Google Scholar

[23] Skorzynska-Polit E., Baszynski T., Plant Sci. 128 (1997) 11-21.

Google Scholar

[24] Snedector G. W., Cochran W. G., Statistical methods. Iowa State University Press, Ames. IA. 1967, p.593.

Google Scholar

[25] Stobart A. K., W. T. Griffiths, I. Ameen-Bukhari, R. P. Sherwood, Physiol. Plantarum 63 (1985).

Google Scholar

[26] Sumner M. E., Noble A. D., Soil acidification: the world story. In: Rengel Z, ed. Handbook of soil acidity, New York, USA: Marcel Dekker, 2003, 1-28.

DOI: 10.1201/9780203912317.ch1

Google Scholar

[27] Tanyolac D., Ekmekc Y., Unalan S., Chemosphere. 67 (2007) 89-98.

Google Scholar

[28] Verma S., Dubey R. S., Plant Sci. 64 (2003) 645-655.

Google Scholar

[29] Woolhouse H. W., 1983. Toxicity and tolerance in the responses of plant metals. In: Encyclopedia of plant physiology. Vol.12 C. (Eds: Lange et al.). pp.245-300.

Google Scholar

[30] Zayed A. M., Terry N., Plant and Soil. 249(1) (2003) 139-156.

Google Scholar

[31] P. Unnikannan, P. Vedhanarayanan, P. Sundaramoorthy, International Letters of Natural Sciences 2 (2014) 35-48.

Google Scholar

[32] Yasabie Abatneh, Omprakash Sahu, International Letters of Natural Sciences 3 (2014) 44-55. ( Received 29 January 2014; accepted 03 February 2014 )

Google Scholar