Dose- and Time-Dependent Micronucleus Induction in Peripheral Erythrocytes of Catfish, Heteropneustes fossilis (Bloch) by Zinc

Article Preview

Abstract:

As far as the detection of metal genotoxicity in fish is concerned, micronucleus (MN) test is considered an extremely suitable measure. In this study, frequencies of micronucleated erythrocytes were scored in peripheral blood of catfish, Heteropneustes fossilis (bloch) after acute in-vivo exposure of zinc at different concentrations (5, 10 and 30 ppm) in the laboratory condition. These three concentrations of zinc were tested at different durations such as 24h, 48h, 72h and 96h respectively. Highly significant (P < 0.001) increased values were obtained for MN frequencies in the peripheral erythrocytes of exposed fishes compared to control groups of fishes. These results confirm that dose- and time-dependent micronucleation in the peripheral erythrocytes of fish after short-term exposure to zinc could provide valuable information regarding zinc containing effluent quality and also help in genetic biomonitoring with this test model. In this context safe concentration of zinc vis-a-vis genotoxicity range could be evaluated for future studies.

Info:

* - Corresponding Author

[1] Abbasi S. A., Soni R., Environ. Poll. 40 (1986) 37-51.

Google Scholar

[2] Al-Sabti K., Metcalfe C. D., Mutat. Res. 343 (1995) 121-135.

Google Scholar

[3] Arkhipchuk V. V., Garanko N. N., Ecotoxicol. Environ. Saf. 62 (2005) 42-52.

Google Scholar

[4] Ayllon F., Garcia-Vazquez E., Mutat. Res. 467 (2000) 177-186.

Google Scholar

[5] Bahari I., Noor F., Daud N. M., Mutat. Res. 313 (1994) 1-5.

Google Scholar

[6] Benoit D. A., Halocombe G. W., J. Fish Biol. 13 (1979) 701-708.

Google Scholar

[7] Brooks T. M., Meyer A. L., Dean B. J., Mutat. Res. 124 (1983) 129-143.

Google Scholar

[8] Brungs W. A., Trans. Am. Fish. Soc. 98 (1969) 272-279.

Google Scholar

[9] Castano A., Carbonell G., Carballo M., Fernandez C., Boleas S., Tarazona J. V., Ecotoxicol. Environ. Safe. 41 (1998) 29-35.

Google Scholar

[10] Cavas T., Ergene-Gozukara S., Mutat. Res. 538 (2003) 81-91.

Google Scholar

[11] Cavas T., Garanko N. N., Arkhipchuk V. V., Food Chem. Toxicol. 43 (2005) 569-574.

Google Scholar

[12] De Floora S., Vigano L., D'Agostini F., Camoirano A., Bagnasco M., Bennicelli C., Melodia F., Arillo A. Mutat. Res. 319 (1993) 167-177.

DOI: 10.1016/0165-1218(93)90076-p

Google Scholar

[13] Fenech M., Drug Dis. Today 7 (2002): 1128-1137.

Google Scholar

[14] Goel K. A., Gupta K., Indian J. Fish 32 (1985) 256-260.

Google Scholar

[15] Grisolia C. K., Corderio C. M. T., Gen. Mol. Biol. 23 (2000) 235-239.

Google Scholar

[16] Guidelines for Canadian Drinking water Quality. 1978. Ministry of National Health and Welfare, Canada.

Google Scholar

[17] Gupta T., Talukder G., Sharma A., Biol. Trace Elem. Res. 30 (1991) 95-101.

Google Scholar

[18] Indian Standards Institution. 1982, New Delhi, India.

Google Scholar

[19] Hemalatha S., Banerjee, T. K., J. Freshwat. Biol. 5 (1993) 191-196.

Google Scholar

[20] Hemalatha S., Banerjee T. K., Biol. Res. 30 (1997) 11-21.

Google Scholar

[21] Hooftman R. N., De Raat W. K., Mutat. Res. 104 (1982) 147-152.

Google Scholar

[22] de Lemos C. T., Rodel P. M., Terra N. R., Erdtmann B., Environ. Toxicol. Chem. 20 (2001) 1320-1324.

Google Scholar

[23] Manna G. K., Sadhukhan A., Curr. Sci. 55 (1986) 498-501.

Google Scholar

[24] Nepomuceno J. C., Ferrari I., Spano M. A., Centano A. J., Environ. Mol. Mutagen. 30 (1997) 293-297.

Google Scholar

[25] Palhares D., Grisolia C. K., Gen. Mol. Biol. 25 (2002) 281-284.

Google Scholar

[26] Poongothai K., Shayin S., Usharani M. V., Cytobios. 86 (1996) 17-22.

Google Scholar

[27] Privezentsev K. V., Sirota N. P., Gaziev A. I., Tsitol Gen. 30 (1996) 45-51.

Google Scholar

[28] Rodriguez-Cea A., Ayllon F., Garcia-Vazquez E., Ecotoxicol. Environ. Saf. 56 (2003) 442-448.

Google Scholar

[29] Sanchez-Galan S., Linde A. R., Ayllon F., Garcia-Vazquez E., Ecotoxicol. Environ. Saf. 49 (2001) 139-143.

Google Scholar

[30] Santra M., Das S. K., Talukder G., Sharma A., Biol. Trace Elem. Res. 88 (2002) 139-144.

Google Scholar

[31] Shuilleabhain S. N., Mothersill C., Sheehan D., O'Brien N. M., O'Halloran J., Van Pelt, F. N. A. M., Davoren M., Toxicol. in Vitro 18 (2004) 365-376.

DOI: 10.1016/j.tiv.2003.10.006

Google Scholar

[32] Talapatra S. N., 2000. Ph.D. Theses, Ranchi University, Ranchi, India.

Google Scholar

[33] Thompson E. D., McDermott J. A., Zerkle T. B., Skare J.A., Evans B. L. B., Cody D.B., Mutat. Res. 223 (1989) 267-272.

Google Scholar

[34] Umegaki K., Fenech M., Mutagen. 15 (2000) 261-269.

Google Scholar

[35] United State Environmental Protection Agency. 1975. EPA, Washington, D.C.

Google Scholar

[36] USSR. 1979. Springer Verlag, Berlin, Heidelberg, New York, pp.26-30.

Google Scholar

[37] World Health Organization. 1971. WHO, Geneva.

Google Scholar

[38] Zenzen V., Fauth E., Zankl H., Janzowski C., Eisenbrand G., Mutat. Res. 497 (2001) 89-99. ( Received 27 January 2014; accepted 01 February 2014 )

Google Scholar