Cretaceous-Paleogene Boundary Clays from Spain and New Zealand: Arsenic Anomaly and the Deccan Traps

Article Preview

Abstract:

High arsenic (As) contents have been reported in numerous Cretaceous-Paleogene boundary (KPB) clays worldwide including that from Spain (at Caravaca and Agost) and N. Zealand (at Woodside Creek). The Deccan Traps (India) enormous volcanism is one of the interpretations which have been offered to explain this anomaly. This report shows that the estimated surface densities of As in the boundary clays in Spain and New Zealand strongly contradict that anomalous As was sourced by this volcanic event.

Info:

Pages:

1-8

Citation:

Online since:

June 2016

Export:

Share:

Citation:

* - Corresponding Author

[1] L. W. Alvarez, W. Alvarez, W., F. Asaro, F and H. V. Michel, Extraterrestrial cause for the Cretaceous-Tertiary extinction, Science 208 (1980) 1095-1108.

DOI: 10.1126/science.208.4448.1095

Google Scholar

[2] J. Smit, J. and J. Hertogen, An extraterrestrial event at the Cretaceous-Tertiary boundary, Nature 285 (1980) 98-200.

DOI: 10.1038/285198a0

Google Scholar

[3] P. Clayes, W. Kiesling, W. Alvarez, Distribution of Chicxulub ejecta at the Cretaceous-Tertiary boundary, Geol. Soc. Am. Spec. 356 (2002) 55-69.

Google Scholar

[4] A. Shukolyukov and G. W. Lugmair, Isotopic evidence for the Cretaceous-Tertiary impactor and its type, Science 282 (1998) 927-930.

DOI: 10.1126/science.282.5390.927

Google Scholar

[5] P. I. Premović, Experimental evidence for the global acidification of surface ocean at the Cretaceous-Paleogene boundary: the biogenic calcite-poor spherule layers, Intern. J. Astrobiol. 8 (2009) 193–206.

DOI: 10.1017/s1473550409990139

Google Scholar

[6] P. I. Premović, Distal "impact" layers and global acidification of ocean water at the Cretaceous–Paleogene boundary (KPB), Geochem. Intern. 49 (2011) 55-65.

DOI: 10.1134/s0016702911010095

Google Scholar

[7] S. Donaldson, A. R. Hildebrand, The global fluence of iridium at the Cretaceous-Tertiary boundary. Meteorit. Planet. Sci. 36 (supplement) (2001), abstract A50.

Google Scholar

[8] F. T. Kyte, Primary mineralogical and chemical characteristics of the major K/T and Late Eocene impact deposits, Proc. Am. Geophys. Union (2004) #B33C-0272.

Google Scholar

[9] A. R. Hildebrandt, W. V. Boynton, Geochemical evidence for atmospheric processing by the Cretaceous/Tertiary boundary impact, Bull. Am. Astron. Soc. 21 (1989) 973.

Google Scholar

[10] Hildebrand A. R. Geochemistry and stratigraphy of the Cretaceous/ Tertiary boundary impact ejecta. Ph. D. thesis, University of Arizona, 1992, p.358.

Google Scholar

[11] P. I. Premović, Cretaceous-Paleogene boundary clays from Spain and New Zealand: Arsenic Anomalies, Open Geosci. 1 (2015) 721-731.

DOI: 10.1515/geo-2015-0052

Google Scholar

[12] I. Gilmour, E. Anders, Cretaceous-Tertiary boundary event: Evidence for a short time scale, Geochim. Cosmochim. Acta 53 (1989) 503-511.

DOI: 10.1016/0016-7037(89)90401-8

Google Scholar

[13] C. B. Officer, C. L. Drake, Terminal Cretaceous environmental events, Science 227 (1985) 1161-1167.

DOI: 10.1126/science.227.4691.1161

Google Scholar

[14] P. N. Shukla, N. Bhandari, A. Das, A. D. Shukla, J. S. Ray, High iridium concentration of alkaline rocks of Deccan and implications to K/T boundary, Proc. Indian Acad. Sci.: Earth Planet. Sci. 110 (2001) 103-110.

DOI: 10.1007/bf02702211

Google Scholar

[15] G. Keller G, T. Adatte, P. K. Bhowmick, H. Upadhyay, A. Dave, A. N. Reddy, B. C. Jaiprakash, Nature and timing of extinctions in Cretaceous-Tertiary planktic forminifera preserved in Deccan intertrappean sediments of the Krishna-Godavari Basin, India, Earth Planet. Sci. Lett. V (2012) 211-221.

DOI: 10.1016/j.epsl.2012.06.021

Google Scholar

[16] A. L. Chenet, X. Quidelleur, F. Fluteau, V. Courtillot, 40K-40Ar geochronological dating of the Main Deccan province and synthesis: a short duration of a giant emplacement, Earth Planet. Sci. Lett. 263 (2007) 1-15.

DOI: 10.1016/j.epsl.2007.07.011

Google Scholar

[17] G. Keller, A. Sahni, S. Bajpai, Deccan volcanism, the KT mass extinction and dinosaurs, J. Biosci. 34 (2009) 709-728.

DOI: 10.1007/s12038-009-0059-6

Google Scholar

[18] A. L. Chenet, F. Fluteau, V. Courtillot, M. Gérard, S. K. Subbarao, Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: Results from a 1200-m-thick section in the Mahabaleshwar escarpment. J. Geophys. Res. 113 (2008) B04101.

DOI: 10.1029/2006jb004635

Google Scholar

[19] P. B. Wignall, Large igneous provinces and mass extinctions, Earth-Sci. Rev. 53 (2001) 1-33.

DOI: 10.1016/s0012-8252(00)00037-4

Google Scholar

[20] V. Courtillot, F. Fluteau, Cretaceous Extinctions: the volcanic hypothesis, Science 328 (2010) 973-974.

DOI: 10.1126/science.328.5981.973-b

Google Scholar

[21] D. Chilvers, P. J. Peterson, Global cycling of arsenic, in: T. C. Hutchinson, K. M. Meema (Eds.), Lead, Mercury, Cadmium and Arsenic in the Environment, Wiley, New York, 1987, pp.279-301.

Google Scholar

[22] B. Schmitz, Origin of microlayering in worldwide distributed Ir-rich marine Cretaceous/Tertiary boundary clays, Geology 16 (1988) 1068-1072.

DOI: 10.1130/0091-7613(1988)016<1068:oomiwd>2.3.co;2

Google Scholar

[23] J. Smit, Meteorite impact, extinctions and the Cretaceous-Tertiary boundary, Geol. Mijnbouw 69 (1990) 187-204.

Google Scholar

[24] E. Molina, L. Alegret, I. Arenillas, J. A. Arz, The Cretaceous/Paleogene boundary at the Agost section revisited: paleoenvironmental reconstruction and mass extinction pattern, J. Iber. Geol. 31 (2005) 135-148.

Google Scholar

[25] H. Palme, H. St. O'Neill, Cosmochemical estimates of mantle composition, in: H. D. Holland, K. K. Turekian (Eds.), Treatise on Geochemistry, Elsevier, Amsterdam, 2004, pp.1-38.

DOI: 10.1016/b0-08-043751-6/02177-0

Google Scholar

[26] J. A. Garland, Dry deposition of small particles to grass in field conditions, in: H. Pruppacher (Ed.), Precipation Scavenging, Dry Deposition and Resuspension, Elsevier, Amsterdam, 1983, pp.849-858.

Google Scholar

[27] J. Müller, Invariant properties of yhe atmospheric aerosol, J. Aerosol Sci. 17 (1986) 277-282.

Google Scholar

[28] W. H. Schroeder, M. Dobson, D. M. Kane, N. D. Johnson, Toxic trace elements associated with airborne particulate matter: a review, J. Air Pollut. Control Assoc. 37 (1987) 1267-1285.

DOI: 10.1080/08940630.1987.10466321

Google Scholar

[29] J. Matschullat, Arsenic in the geosphere: a review, Sci. Total Environ. 249 (2000) 297-312.

Google Scholar

[30] C. P. Strong, R. R. Brooks, S. M. Wilson, R. D. Reeves, C. J. Orth, X. Mao, L. R. Quintana, E. Anders, A new Cretaceous/Tertiary boundary site at Flaxbourne River, New Zealand: biostratigraphy and geochemistry, Geochim. Cosmochim. Acta 51 (1987) 2769-2777.

DOI: 10.1016/0016-7037(87)90156-6

Google Scholar

[31] J. W. Morgan, Lonar crater glasses and high-magnesium australites-Trace element volatilization and meteoritic contamination. Proc. 9th Lunar Planet. Sci. Conf. (1978) pp.2713-2730.

Google Scholar

[32] I. Olmez, D. L. Finnegan, W. H. Zoller, Iridium emissions from Kilauea Volcano. J. Geophys.. Res. 91 (1986) 653–663.

DOI: 10.1029/jb091ib01p00653

Google Scholar

[33] S. E. Bryan, Silicic large igneous provinces, Episodes 30 (2007) 20–31.

DOI: 10.18814/epiiugs/2007/v30i1/004

Google Scholar

[34] S. Self, The effects and consequences of very large explosive volcanic eruptions, Philos. Trans. Royal Soc. Series A 364 (2006) 2073–2097.

DOI: 10.1098/rsta.2006.1814

Google Scholar

[35] B. A. Black, L. T. Elkins-Tanton, M. C. Rowe, I. U. Peate, Magnitude and consequences of volatile release from the Siberian Traps, Earth Planet. Sci. Lett. 317-318 (2012) 363–373.

DOI: 10.1016/j.epsl.2011.12.001

Google Scholar

[36] N. Bhandari, P. N. Shukla, Y. G. Ghevariya, S. M. Sundaram, K/T boundary layer in Deccan intertrappeans at Anjar Kutch, Geol. Soc. Am. Spec. Paper 307 (1996) 417-424.

DOI: 10.1130/0-8137-2307-8.417

Google Scholar

[37] B. Gertsch, G. Keller G, T. Adatte, D. Bartels, Platinum group element (PGE) geochemistry of Brazos sections: Texas, USA, Sediment. Geol. (SEPM) Spec. Publ. No. 100 (2011) 227-249.

DOI: 10.2110/sepmsp.100.227

Google Scholar

[38] S. Osae, S. Misra, C. Koeberl, D. Sengupta, S. Ghosh, Target rocks, impact glasses, and melt rocks from the Lonar impact crater, India: Petrography and geochemistry, Meteorit. Planet. Sci. 40 (2005) 1473–1492.

DOI: 10.1111/j.1945-5100.2005.tb00413.x

Google Scholar

[39] W. H. Zoller, J. R. Parrington, J. M. Kotra, Iridium enrichment in airborne particles from Kilauea volcano, Science 222 (1983) 1118-1120.

DOI: 10.1126/science.222.4628.1118

Google Scholar

[40] D. L. Finnegan, T. L. Miller, W. H. Zoller, Iridium and other trace-metal enrichments from Hawaiian volcanoes, Geol. Soc. Am. Spec. Paper 247 (1990) 111-116.

DOI: 10.1130/spe247-p111

Google Scholar

[41] T. A. Mather, D. M. Pyle, C. Oppenheimer, Tropospheric Volcanic Aerosol, in: A. Robock, C. Oppenheimer (Eds.), Geophysical Monograph 139, Am. Geophys. Union, Washington, 2003, pp.189-212.

DOI: 10.1029/139gm12

Google Scholar

[42] G. Sen, D. Chandrasekharam, Deccan Traps flood basalt province: an evaluation of the thermochemical plume model, J. Ray, G. Sen, B. Ghosh et al. (Eds.), Topics in Igneous Petrology, Springer, Berlin, 2011, pp.29-53

DOI: 10.1007/978-90-481-9600-5_2

Google Scholar

[43] M. S. Quinby-Hunt, K. K. Turekian, Distribution of elements in sea water, EOS Trans. Am. Geophys. Union 64 (1983) 130-132

DOI: 10.1029/eo064i014p00130

Google Scholar