[1]
L. W. Alvarez, W. Alvarez, W., F. Asaro, F and H. V. Michel, Extraterrestrial cause for the Cretaceous-Tertiary extinction, Science 208 (1980) 1095-1108.
DOI: 10.1126/science.208.4448.1095
Google Scholar
[2]
J. Smit, J. and J. Hertogen, An extraterrestrial event at the Cretaceous-Tertiary boundary, Nature 285 (1980) 98-200.
DOI: 10.1038/285198a0
Google Scholar
[3]
P. Clayes, W. Kiesling, W. Alvarez, Distribution of Chicxulub ejecta at the Cretaceous-Tertiary boundary, Geol. Soc. Am. Spec. 356 (2002) 55-69.
Google Scholar
[4]
A. Shukolyukov and G. W. Lugmair, Isotopic evidence for the Cretaceous-Tertiary impactor and its type, Science 282 (1998) 927-930.
DOI: 10.1126/science.282.5390.927
Google Scholar
[5]
P. I. Premović, Experimental evidence for the global acidification of surface ocean at the Cretaceous-Paleogene boundary: the biogenic calcite-poor spherule layers, Intern. J. Astrobiol. 8 (2009) 193–206.
DOI: 10.1017/s1473550409990139
Google Scholar
[6]
P. I. Premović, Distal "impact" layers and global acidification of ocean water at the Cretaceous–Paleogene boundary (KPB), Geochem. Intern. 49 (2011) 55-65.
DOI: 10.1134/s0016702911010095
Google Scholar
[7]
S. Donaldson, A. R. Hildebrand, The global fluence of iridium at the Cretaceous-Tertiary boundary. Meteorit. Planet. Sci. 36 (supplement) (2001), abstract A50.
Google Scholar
[8]
F. T. Kyte, Primary mineralogical and chemical characteristics of the major K/T and Late Eocene impact deposits, Proc. Am. Geophys. Union (2004) #B33C-0272.
Google Scholar
[9]
A. R. Hildebrandt, W. V. Boynton, Geochemical evidence for atmospheric processing by the Cretaceous/Tertiary boundary impact, Bull. Am. Astron. Soc. 21 (1989) 973.
Google Scholar
[10]
Hildebrand A. R. Geochemistry and stratigraphy of the Cretaceous/ Tertiary boundary impact ejecta. Ph. D. thesis, University of Arizona, 1992, p.358.
Google Scholar
[11]
P. I. Premović, Cretaceous-Paleogene boundary clays from Spain and New Zealand: Arsenic Anomalies, Open Geosci. 1 (2015) 721-731.
DOI: 10.1515/geo-2015-0052
Google Scholar
[12]
I. Gilmour, E. Anders, Cretaceous-Tertiary boundary event: Evidence for a short time scale, Geochim. Cosmochim. Acta 53 (1989) 503-511.
DOI: 10.1016/0016-7037(89)90401-8
Google Scholar
[13]
C. B. Officer, C. L. Drake, Terminal Cretaceous environmental events, Science 227 (1985) 1161-1167.
DOI: 10.1126/science.227.4691.1161
Google Scholar
[14]
P. N. Shukla, N. Bhandari, A. Das, A. D. Shukla, J. S. Ray, High iridium concentration of alkaline rocks of Deccan and implications to K/T boundary, Proc. Indian Acad. Sci.: Earth Planet. Sci. 110 (2001) 103-110.
DOI: 10.1007/bf02702211
Google Scholar
[15]
G. Keller G, T. Adatte, P. K. Bhowmick, H. Upadhyay, A. Dave, A. N. Reddy, B. C. Jaiprakash, Nature and timing of extinctions in Cretaceous-Tertiary planktic forminifera preserved in Deccan intertrappean sediments of the Krishna-Godavari Basin, India, Earth Planet. Sci. Lett. V (2012) 211-221.
DOI: 10.1016/j.epsl.2012.06.021
Google Scholar
[16]
A. L. Chenet, X. Quidelleur, F. Fluteau, V. Courtillot, 40K-40Ar geochronological dating of the Main Deccan province and synthesis: a short duration of a giant emplacement, Earth Planet. Sci. Lett. 263 (2007) 1-15.
DOI: 10.1016/j.epsl.2007.07.011
Google Scholar
[17]
G. Keller, A. Sahni, S. Bajpai, Deccan volcanism, the KT mass extinction and dinosaurs, J. Biosci. 34 (2009) 709-728.
DOI: 10.1007/s12038-009-0059-6
Google Scholar
[18]
A. L. Chenet, F. Fluteau, V. Courtillot, M. Gérard, S. K. Subbarao, Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: Results from a 1200-m-thick section in the Mahabaleshwar escarpment. J. Geophys. Res. 113 (2008) B04101.
DOI: 10.1029/2006jb004635
Google Scholar
[19]
P. B. Wignall, Large igneous provinces and mass extinctions, Earth-Sci. Rev. 53 (2001) 1-33.
DOI: 10.1016/s0012-8252(00)00037-4
Google Scholar
[20]
V. Courtillot, F. Fluteau, Cretaceous Extinctions: the volcanic hypothesis, Science 328 (2010) 973-974.
DOI: 10.1126/science.328.5981.973-b
Google Scholar
[21]
D. Chilvers, P. J. Peterson, Global cycling of arsenic, in: T. C. Hutchinson, K. M. Meema (Eds.), Lead, Mercury, Cadmium and Arsenic in the Environment, Wiley, New York, 1987, pp.279-301.
Google Scholar
[22]
B. Schmitz, Origin of microlayering in worldwide distributed Ir-rich marine Cretaceous/Tertiary boundary clays, Geology 16 (1988) 1068-1072.
DOI: 10.1130/0091-7613(1988)016<1068:oomiwd>2.3.co;2
Google Scholar
[23]
J. Smit, Meteorite impact, extinctions and the Cretaceous-Tertiary boundary, Geol. Mijnbouw 69 (1990) 187-204.
Google Scholar
[24]
E. Molina, L. Alegret, I. Arenillas, J. A. Arz, The Cretaceous/Paleogene boundary at the Agost section revisited: paleoenvironmental reconstruction and mass extinction pattern, J. Iber. Geol. 31 (2005) 135-148.
Google Scholar
[25]
H. Palme, H. St. O'Neill, Cosmochemical estimates of mantle composition, in: H. D. Holland, K. K. Turekian (Eds.), Treatise on Geochemistry, Elsevier, Amsterdam, 2004, pp.1-38.
DOI: 10.1016/b0-08-043751-6/02177-0
Google Scholar
[26]
J. A. Garland, Dry deposition of small particles to grass in field conditions, in: H. Pruppacher (Ed.), Precipation Scavenging, Dry Deposition and Resuspension, Elsevier, Amsterdam, 1983, pp.849-858.
Google Scholar
[27]
J. Müller, Invariant properties of yhe atmospheric aerosol, J. Aerosol Sci. 17 (1986) 277-282.
Google Scholar
[28]
W. H. Schroeder, M. Dobson, D. M. Kane, N. D. Johnson, Toxic trace elements associated with airborne particulate matter: a review, J. Air Pollut. Control Assoc. 37 (1987) 1267-1285.
DOI: 10.1080/08940630.1987.10466321
Google Scholar
[29]
J. Matschullat, Arsenic in the geosphere: a review, Sci. Total Environ. 249 (2000) 297-312.
Google Scholar
[30]
C. P. Strong, R. R. Brooks, S. M. Wilson, R. D. Reeves, C. J. Orth, X. Mao, L. R. Quintana, E. Anders, A new Cretaceous/Tertiary boundary site at Flaxbourne River, New Zealand: biostratigraphy and geochemistry, Geochim. Cosmochim. Acta 51 (1987) 2769-2777.
DOI: 10.1016/0016-7037(87)90156-6
Google Scholar
[31]
J. W. Morgan, Lonar crater glasses and high-magnesium australites-Trace element volatilization and meteoritic contamination. Proc. 9th Lunar Planet. Sci. Conf. (1978) pp.2713-2730.
Google Scholar
[32]
I. Olmez, D. L. Finnegan, W. H. Zoller, Iridium emissions from Kilauea Volcano. J. Geophys.. Res. 91 (1986) 653–663.
DOI: 10.1029/jb091ib01p00653
Google Scholar
[33]
S. E. Bryan, Silicic large igneous provinces, Episodes 30 (2007) 20–31.
DOI: 10.18814/epiiugs/2007/v30i1/004
Google Scholar
[34]
S. Self, The effects and consequences of very large explosive volcanic eruptions, Philos. Trans. Royal Soc. Series A 364 (2006) 2073–2097.
DOI: 10.1098/rsta.2006.1814
Google Scholar
[35]
B. A. Black, L. T. Elkins-Tanton, M. C. Rowe, I. U. Peate, Magnitude and consequences of volatile release from the Siberian Traps, Earth Planet. Sci. Lett. 317-318 (2012) 363–373.
DOI: 10.1016/j.epsl.2011.12.001
Google Scholar
[36]
N. Bhandari, P. N. Shukla, Y. G. Ghevariya, S. M. Sundaram, K/T boundary layer in Deccan intertrappeans at Anjar Kutch, Geol. Soc. Am. Spec. Paper 307 (1996) 417-424.
DOI: 10.1130/0-8137-2307-8.417
Google Scholar
[37]
B. Gertsch, G. Keller G, T. Adatte, D. Bartels, Platinum group element (PGE) geochemistry of Brazos sections: Texas, USA, Sediment. Geol. (SEPM) Spec. Publ. No. 100 (2011) 227-249.
DOI: 10.2110/sepmsp.100.227
Google Scholar
[38]
S. Osae, S. Misra, C. Koeberl, D. Sengupta, S. Ghosh, Target rocks, impact glasses, and melt rocks from the Lonar impact crater, India: Petrography and geochemistry, Meteorit. Planet. Sci. 40 (2005) 1473–1492.
DOI: 10.1111/j.1945-5100.2005.tb00413.x
Google Scholar
[39]
W. H. Zoller, J. R. Parrington, J. M. Kotra, Iridium enrichment in airborne particles from Kilauea volcano, Science 222 (1983) 1118-1120.
DOI: 10.1126/science.222.4628.1118
Google Scholar
[40]
D. L. Finnegan, T. L. Miller, W. H. Zoller, Iridium and other trace-metal enrichments from Hawaiian volcanoes, Geol. Soc. Am. Spec. Paper 247 (1990) 111-116.
DOI: 10.1130/spe247-p111
Google Scholar
[41]
T. A. Mather, D. M. Pyle, C. Oppenheimer, Tropospheric Volcanic Aerosol, in: A. Robock, C. Oppenheimer (Eds.), Geophysical Monograph 139, Am. Geophys. Union, Washington, 2003, pp.189-212.
DOI: 10.1029/139gm12
Google Scholar
[42]
G. Sen, D. Chandrasekharam, Deccan Traps flood basalt province: an evaluation of the thermochemical plume model, J. Ray, G. Sen, B. Ghosh et al. (Eds.), Topics in Igneous Petrology, Springer, Berlin, 2011, pp.29-53
DOI: 10.1007/978-90-481-9600-5_2
Google Scholar
[43]
M. S. Quinby-Hunt, K. K. Turekian, Distribution of elements in sea water, EOS Trans. Am. Geophys. Union 64 (1983) 130-132
DOI: 10.1029/eo064i014p00130
Google Scholar