Morphology and Phenotype of Peripheral Erythrocytes of Fish: A Rapid Screening of Images by Using Software

Article Preview

Abstract:

Many information of biological study as stained cells analysis under microscope cannot be obtained rich information like detail morphology, shape, size, proper intensity etc. but image analysis software can easily be detected all these parameters within short duration. The cells types can be yeast cells to mammalian cells. An attempt has been made to detect cellular abnormalities from an image of metronidazole (MTZ) treated compared to control images of peripheral erythrocytes of fish by using non-commercial, open-source, CellProfiler (CP) image analysis software (Ver. 2.1.0). The comparative results were obtained after analysis the software. In conclusion, this image based screening of Giemsa stained fish erythrocytes can be a suitable tool in biological research for primary toxicity prediction at DNA level alongwith cellular phenotypes. Moreover, still suggestions are needed in relation to accuracy of present analysis for Giemsa stained fish erythrocytes because previous works have been carried out images of cells with fluorescence dye.

Info:

* - Corresponding Author

[1] J. T. Isaacs, W.B. Isaacs, W.F.J. Feitz, J. Scheres, Establishment and characterization of seven dunning rat prostatic cancer cell lines and their use in developing methods for predicting metastatic abilities of prostatic cancers, Prostate 9 (1986) 261-281.

DOI: 10.1002/pros.2990090306

Google Scholar

[2] K.A. Giuliano, R.L. DeBiasio, R.T. Dunlay, A. Gough, J.M. Volosky, J. Zock, G.N. Pavlakis, D.L. Taylor, High-content screening: a new approach to easing key bottlenecks in the drug discovery process, J. Biomol. Screen. 2 (1997) 249-259.

DOI: 10.1177/108705719700200410

Google Scholar

[3] B.M. Rothen-Rutishauser, S. Schurch, B. Haenni, N. Kapp, P. Gehr, Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques, Environ. Sci. Technol. 40 (2006) 4353-4359.

DOI: 10.1021/es0522635

Google Scholar

[4] K. Tomankova, H. Kolarova, M. Vujtek, H. Zapletalova, Study of cancer cells used atomic force microscopy. Modern Research and Educational Topics in Microscopy. A. Méndez-Vilas, and J. Díaz, (Eds.). Formatex (2007) pp.23-28.

Google Scholar

[5] C. Wahlby, I.M. Sintorn, F. Erlandsson, G. Borgefors, E. Bengtsson, Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections, J. Microsc. 215 (2004) 67-76.

DOI: 10.1111/j.0022-2720.2004.01338.x

Google Scholar

[6] A.E. Carpenter, T.R. Jones, M.R. Lamprecht, C. Clarke, I.H. Kang, O. Friman, D.A. Guertin, J.H. Chang, R.A. Lindquist, J. Moffat, P. Golland, D.M. Sabatini, CellProfiler: image analysis software for identifying and quantifying cell phenotypes, Genome Biol. 7 (2006) R100.

DOI: 10.1186/gb-2006-7-10-r100

Google Scholar

[7] M. R. Lamprecht, D.M. Sabatini, A.E. Carpenter, CellProfiler: free, versatile software for automated biological image analysis, Biotechniques 42 (2007) 71-75.

DOI: 10.2144/000112257

Google Scholar

[8] T.R. Jones, A.E. Carpenter, M.R. Lamprecht, J. Moffat, S.J. Silver, J.K. Grenier, B. Adam, A.D. Castoreno, U.S. Eggert, D.E. Root, P. Golland, D.M. Sabatini, Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning, Proc. Nat. Acad. Sci. USA 106 (6) (2009) 1826-1831.

DOI: 10.1073/pnas.0808843106

Google Scholar

[9] V. Ljosa, A.E. Carpenter, Introduction to the quantitative analysis of two-dimensional fluorescence microscopy images for cell-based screening, PLoS Comput. Biol. 5 (12) (2009) e1000603.

DOI: 10.1371/journal.pcbi.1000603

Google Scholar

[10] L. Kamentsky, T.R. Jones, A. Fraser, M.-A. Bray, D.J. Logan, K.L. Madden, V. Ljosa, C. Rueden, K.W. Eliceiri, A.E. Carpenter, Improved structure, function, and compatibility for CellProfiler: Modular high-throughput image analysis software, Bioinformatics 27 (2011) 1179-1180.

DOI: 10.1093/bioinformatics/btr095

Google Scholar

[11] M.-A. Bray, M.S. Vokes, A.E. Carpenter, Using CellProfiler for automatic identification and measurement of biological objects in images, Curr. Protoc. Mol. Biol. 109 (2015) 14.17.1-14.17.13.

DOI: 10.1002/0471142727.mb1417s109

Google Scholar

[12] M.V. Boland, M.K. Markey, R.F. Murphy, Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images, Cytometry 33 (1998) 366-375.

DOI: 10.1002/(sici)1097-0320(19981101)33:3<366::aid-cyto12>3.0.co;2-r

Google Scholar

[13] M.V. Boland, R.F. Murphy, A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells, Bioinformatics 17 (2001) 1213-1223.

DOI: 10.1093/bioinformatics/17.12.1213

Google Scholar

[14] A.A. Kiger, B. Baum, S. Jones, M.R. Jones, A. Coulson, C. Echeverri, N. Perrimon, A functional genomic analysis of cell morphology using RNA interference, J. Biol. 2 (4) (2003) 27.

DOI: 10.1186/1475-4924-2-27

Google Scholar

[15] M. Tanaka, B. Bateman, D. Rauh, E. Vaisberg, S. Ramachandani, C. Zhang, K.C. Hansen, A.L. Burlingame, J.K. Trautman, K.M. Shokat, C.L. Adams, An unbiased cell morphology-based screen for new, biologically active small molecules, PLoS Biol. 3 (5) (2005) e128.

DOI: 10.1371/journal.pbio.0030128

Google Scholar

[16] J. Moffat, D.A. Grueneberg, X. Yang, S.Y. Kim, A.M. Kloepfer, G. Hinkle, B. Piqani, T. M. Eisenhaure, B. Luo, J.K. Grenier, A.E. Carpenter, S.Y. Foo, S.A. Stewart, B.R. Stockwell, N. Hacohen, W.C. Hahn, E.S. Lander, D.M. Sabatini, D.E. Root, A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen, Cell 124 (2006) 1283-1298.

DOI: 10.1016/j.cell.2006.01.040

Google Scholar

[17] B. Neumann, M. Held, U. Liebel, H. Erfle, P. Rogers, R. Pepperkok, J. Ellenberg, High-throughput RNAi screening by time-lapse imaging of live human cells, Nat. Methods 3 (2006) 385-390.

DOI: 10.1038/nmeth876

Google Scholar

[18] C.L. Adams, V. Kutsyy, D.A. Coleman, G. Cong, A.M. Crompton, A. Elias, D. R. Oestreicher, J.K. Trautman, E. Vaisberg, Compound classification using image-based cellular phenotypes, Methods Enzymol. 414 (2006) 440-468.

DOI: 10.1016/s0076-6879(06)14024-0

Google Scholar

[19] X. Chen, R.F. Murphy, Automated interpretation of protein subcellular location patterns," Int. Rev. Cytol. 249 (2006) 193-227.

Google Scholar

[20] N. Orlov, J. Johnston, T. Macura, L. Shamir, I. Goldberg, Computer vision for microscopy applications. Vision Systems: Segmentation and Pattern Recognition, eds. G. Obinata, and A. Dutta, I-Tech, Vienna, (2007) pp.221-242.

DOI: 10.5772/4962

Google Scholar

[21] C. Lin, W. Mak, P. Hong, K. Sepp, N. Perrimon, Intelligent interfaces for mining large-scale RNAi-HCS image databases. IEEE 7th International Conference on Bioinformatics and Biomedical Engineering, IEEE, Washington DC (2007).

DOI: 10.1109/bibe.2007.4375742

Google Scholar

[22] L.H. Loo, L.F. Wu, S.J. Altschuler, Image-based multivariate profiling of drug responses from single cells, Nat. Methods 4 (2007) 445-453.

DOI: 10.1038/nmeth1032

Google Scholar

[23] D.W. Young, A. Bender, J. Hoyt, E. McWhinnie, G-W. Chirn, C.Y. Tao, J.A. Tallarico, M. Labow, J.L. Jenkins, T.J. Mitchison, Y. Feng, Integrating high-content screening and ligand-target prediction to identify mechanism of action, Nat. Chem. Biol. 4 (2008) 59-68.

DOI: 10.1038/nchembio.2007.53

Google Scholar

[24] J. Wang, X. Zhou, P.L. Bradley, S-F. Chang, N. Perrimon, S.T.C. Wong, Cellular phenotype recognition for high-content RNA interference genome-wide screening, J. Biomol. Screen 13 (2008) 29-39.

DOI: 10.1177/1087057107311223

Google Scholar

[25] C. Bakal, J. Aach, G. Church, N. Perrimon, Quantitative morphological signatures define local signaling networks regulating cell morphology, Science 316 (2007) 1753-1756.

DOI: 10.1126/science.1140324

Google Scholar

[26] S.N. Talapatra, S. Dasgupta, G. Guha, M. Auddy, A. Mukhopadhyay, Therapeutic efficacies of Coriandrum sativum aqueous extract against metronidazole-induced genotoxicity in Channa punctatus peripheral erythrocytes, Food Chem. Toxicol. 48 (12) (2010) 3458-3461.

DOI: 10.1016/j.fct.2010.09.021

Google Scholar

[27] K. Rodenacker, E.A. Bengtsson, Feature set for cytometry on digitized microscopic images, Anal. Cell. Pathol. 25 (2003) 1-36.

DOI: 10.1155/2003/548678

Google Scholar

[28] R.M. Haralick, K. Shanmuga, I. Dinstein, Textural features for image classification, Ieee T Syst Man Cyb SMC3 (1973) 610-621.

DOI: 10.1109/tsmc.1973.4309314

Google Scholar

[29] D. Gabor, Theory of communication, J. Institute Electrical Engineers 93 (1946) 429-441.

Google Scholar

[30] M.R. Turner, Texture discrimination by Gabor functions, Biol. Cybern. 55 (1986) 71-82.

DOI: 10.1007/bf00341922

Google Scholar

[31] D. Zhang, G. Lu, Improving retrieval performance of zernike moment descriptor on affined shapes, IEEE Int. Conf. on Multimedia and Expo 1 (2002) 205-208.

DOI: 10.1109/icme.2002.1035754

Google Scholar

[32] D.B. Wheeler, S.N. Bailey, D.A. Guertin, A.E. Carpenter, C.O. Higgins, D.M. Sabatini, RNAi living-cell microarrays for loss-of-function screens in Drosophila melanogaster cells, Nat. Methods 1 (2004) 127-132.

DOI: 10.1038/nmeth711

Google Scholar

[33] S.N. Bailey, S.M. Ali, A.E. Carpenter, C.O. Higgins, D.M. Sabatini, Microarrays of lentiviruses for gene function screens in immortalized and primary cells, Nat. Methods 3 (2006) 117-122.

DOI: 10.1038/nmeth848

Google Scholar

[34] L.E. Cowen, A.E. Carpenter, O. Matangkasombut, G.R. Fink, S. Lindquist, Genetic architecture of Hsp90-dependent drug resistance, Eukaryot. Cell 5 (12) (2006) 2184-2188.

DOI: 10.1128/ec.00274-06

Google Scholar

[35] A.E. Baltus, D.B. Menke, Y.C. Hu, M.L. Goodheart, A.E. Carpenter, D.G. de Rooij, D.C. Page, In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication, Nat. Genet. 38 (12) (2006) 1430-1434.

DOI: 10.1038/ng1919

Google Scholar

[36] A. Sigal, R. Milo, A. Cohen, N. Geva-Zatorsky, Y. Klein, I. Alaluf, N. Swerdlin, N. Perzov, T. Danon, Y. Liron, T. Raveh, A.E. Carpenter, G. Lahav, U. Alon, Dynamic proteomics in individual human cells uncovers widespread cell-cycle dependence of nuclear proteins, Nat. Methods 3 (2006) 525-531.

DOI: 10.1038/nmeth892

Google Scholar

[37] A. Khotanzad, Y.H. Hong, Invariant image recognition by zernike moments, IEEE, 12 (5) (1990) 489-497.

DOI: 10.1109/34.55109

Google Scholar

[38] T. Suk, J. Flusser, B. Zitova, Moments and moment invariants in pattern recognition, Wiley and Sons Ltd (2009).

Google Scholar

[39] M. Vorobyov, Shape classification using zernike moments, iCamp at University of California Irvine August 5 (2011).

Google Scholar