[1]
J. T. Isaacs, W.B. Isaacs, W.F.J. Feitz, J. Scheres, Establishment and characterization of seven dunning rat prostatic cancer cell lines and their use in developing methods for predicting metastatic abilities of prostatic cancers, Prostate 9 (1986) 261-281.
DOI: 10.1002/pros.2990090306
Google Scholar
[2]
K.A. Giuliano, R.L. DeBiasio, R.T. Dunlay, A. Gough, J.M. Volosky, J. Zock, G.N. Pavlakis, D.L. Taylor, High-content screening: a new approach to easing key bottlenecks in the drug discovery process, J. Biomol. Screen. 2 (1997) 249-259.
DOI: 10.1177/108705719700200410
Google Scholar
[3]
B.M. Rothen-Rutishauser, S. Schurch, B. Haenni, N. Kapp, P. Gehr, Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques, Environ. Sci. Technol. 40 (2006) 4353-4359.
DOI: 10.1021/es0522635
Google Scholar
[4]
K. Tomankova, H. Kolarova, M. Vujtek, H. Zapletalova, Study of cancer cells used atomic force microscopy. Modern Research and Educational Topics in Microscopy. A. Méndez-Vilas, and J. Díaz, (Eds.). Formatex (2007) pp.23-28.
Google Scholar
[5]
C. Wahlby, I.M. Sintorn, F. Erlandsson, G. Borgefors, E. Bengtsson, Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections, J. Microsc. 215 (2004) 67-76.
DOI: 10.1111/j.0022-2720.2004.01338.x
Google Scholar
[6]
A.E. Carpenter, T.R. Jones, M.R. Lamprecht, C. Clarke, I.H. Kang, O. Friman, D.A. Guertin, J.H. Chang, R.A. Lindquist, J. Moffat, P. Golland, D.M. Sabatini, CellProfiler: image analysis software for identifying and quantifying cell phenotypes, Genome Biol. 7 (2006) R100.
DOI: 10.1186/gb-2006-7-10-r100
Google Scholar
[7]
M. R. Lamprecht, D.M. Sabatini, A.E. Carpenter, CellProfiler: free, versatile software for automated biological image analysis, Biotechniques 42 (2007) 71-75.
DOI: 10.2144/000112257
Google Scholar
[8]
T.R. Jones, A.E. Carpenter, M.R. Lamprecht, J. Moffat, S.J. Silver, J.K. Grenier, B. Adam, A.D. Castoreno, U.S. Eggert, D.E. Root, P. Golland, D.M. Sabatini, Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning, Proc. Nat. Acad. Sci. USA 106 (6) (2009) 1826-1831.
DOI: 10.1073/pnas.0808843106
Google Scholar
[9]
V. Ljosa, A.E. Carpenter, Introduction to the quantitative analysis of two-dimensional fluorescence microscopy images for cell-based screening, PLoS Comput. Biol. 5 (12) (2009) e1000603.
DOI: 10.1371/journal.pcbi.1000603
Google Scholar
[10]
L. Kamentsky, T.R. Jones, A. Fraser, M.-A. Bray, D.J. Logan, K.L. Madden, V. Ljosa, C. Rueden, K.W. Eliceiri, A.E. Carpenter, Improved structure, function, and compatibility for CellProfiler: Modular high-throughput image analysis software, Bioinformatics 27 (2011) 1179-1180.
DOI: 10.1093/bioinformatics/btr095
Google Scholar
[11]
M.-A. Bray, M.S. Vokes, A.E. Carpenter, Using CellProfiler for automatic identification and measurement of biological objects in images, Curr. Protoc. Mol. Biol. 109 (2015) 14.17.1-14.17.13.
DOI: 10.1002/0471142727.mb1417s109
Google Scholar
[12]
M.V. Boland, M.K. Markey, R.F. Murphy, Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images, Cytometry 33 (1998) 366-375.
DOI: 10.1002/(sici)1097-0320(19981101)33:3<366::aid-cyto12>3.0.co;2-r
Google Scholar
[13]
M.V. Boland, R.F. Murphy, A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells, Bioinformatics 17 (2001) 1213-1223.
DOI: 10.1093/bioinformatics/17.12.1213
Google Scholar
[14]
A.A. Kiger, B. Baum, S. Jones, M.R. Jones, A. Coulson, C. Echeverri, N. Perrimon, A functional genomic analysis of cell morphology using RNA interference, J. Biol. 2 (4) (2003) 27.
DOI: 10.1186/1475-4924-2-27
Google Scholar
[15]
M. Tanaka, B. Bateman, D. Rauh, E. Vaisberg, S. Ramachandani, C. Zhang, K.C. Hansen, A.L. Burlingame, J.K. Trautman, K.M. Shokat, C.L. Adams, An unbiased cell morphology-based screen for new, biologically active small molecules, PLoS Biol. 3 (5) (2005) e128.
DOI: 10.1371/journal.pbio.0030128
Google Scholar
[16]
J. Moffat, D.A. Grueneberg, X. Yang, S.Y. Kim, A.M. Kloepfer, G. Hinkle, B. Piqani, T. M. Eisenhaure, B. Luo, J.K. Grenier, A.E. Carpenter, S.Y. Foo, S.A. Stewart, B.R. Stockwell, N. Hacohen, W.C. Hahn, E.S. Lander, D.M. Sabatini, D.E. Root, A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen, Cell 124 (2006) 1283-1298.
DOI: 10.1016/j.cell.2006.01.040
Google Scholar
[17]
B. Neumann, M. Held, U. Liebel, H. Erfle, P. Rogers, R. Pepperkok, J. Ellenberg, High-throughput RNAi screening by time-lapse imaging of live human cells, Nat. Methods 3 (2006) 385-390.
DOI: 10.1038/nmeth876
Google Scholar
[18]
C.L. Adams, V. Kutsyy, D.A. Coleman, G. Cong, A.M. Crompton, A. Elias, D. R. Oestreicher, J.K. Trautman, E. Vaisberg, Compound classification using image-based cellular phenotypes, Methods Enzymol. 414 (2006) 440-468.
DOI: 10.1016/s0076-6879(06)14024-0
Google Scholar
[19]
X. Chen, R.F. Murphy, Automated interpretation of protein subcellular location patterns," Int. Rev. Cytol. 249 (2006) 193-227.
Google Scholar
[20]
N. Orlov, J. Johnston, T. Macura, L. Shamir, I. Goldberg, Computer vision for microscopy applications. Vision Systems: Segmentation and Pattern Recognition, eds. G. Obinata, and A. Dutta, I-Tech, Vienna, (2007) pp.221-242.
DOI: 10.5772/4962
Google Scholar
[21]
C. Lin, W. Mak, P. Hong, K. Sepp, N. Perrimon, Intelligent interfaces for mining large-scale RNAi-HCS image databases. IEEE 7th International Conference on Bioinformatics and Biomedical Engineering, IEEE, Washington DC (2007).
DOI: 10.1109/bibe.2007.4375742
Google Scholar
[22]
L.H. Loo, L.F. Wu, S.J. Altschuler, Image-based multivariate profiling of drug responses from single cells, Nat. Methods 4 (2007) 445-453.
DOI: 10.1038/nmeth1032
Google Scholar
[23]
D.W. Young, A. Bender, J. Hoyt, E. McWhinnie, G-W. Chirn, C.Y. Tao, J.A. Tallarico, M. Labow, J.L. Jenkins, T.J. Mitchison, Y. Feng, Integrating high-content screening and ligand-target prediction to identify mechanism of action, Nat. Chem. Biol. 4 (2008) 59-68.
DOI: 10.1038/nchembio.2007.53
Google Scholar
[24]
J. Wang, X. Zhou, P.L. Bradley, S-F. Chang, N. Perrimon, S.T.C. Wong, Cellular phenotype recognition for high-content RNA interference genome-wide screening, J. Biomol. Screen 13 (2008) 29-39.
DOI: 10.1177/1087057107311223
Google Scholar
[25]
C. Bakal, J. Aach, G. Church, N. Perrimon, Quantitative morphological signatures define local signaling networks regulating cell morphology, Science 316 (2007) 1753-1756.
DOI: 10.1126/science.1140324
Google Scholar
[26]
S.N. Talapatra, S. Dasgupta, G. Guha, M. Auddy, A. Mukhopadhyay, Therapeutic efficacies of Coriandrum sativum aqueous extract against metronidazole-induced genotoxicity in Channa punctatus peripheral erythrocytes, Food Chem. Toxicol. 48 (12) (2010) 3458-3461.
DOI: 10.1016/j.fct.2010.09.021
Google Scholar
[27]
K. Rodenacker, E.A. Bengtsson, Feature set for cytometry on digitized microscopic images, Anal. Cell. Pathol. 25 (2003) 1-36.
DOI: 10.1155/2003/548678
Google Scholar
[28]
R.M. Haralick, K. Shanmuga, I. Dinstein, Textural features for image classification, Ieee T Syst Man Cyb SMC3 (1973) 610-621.
DOI: 10.1109/tsmc.1973.4309314
Google Scholar
[29]
D. Gabor, Theory of communication, J. Institute Electrical Engineers 93 (1946) 429-441.
Google Scholar
[30]
M.R. Turner, Texture discrimination by Gabor functions, Biol. Cybern. 55 (1986) 71-82.
DOI: 10.1007/bf00341922
Google Scholar
[31]
D. Zhang, G. Lu, Improving retrieval performance of zernike moment descriptor on affined shapes, IEEE Int. Conf. on Multimedia and Expo 1 (2002) 205-208.
DOI: 10.1109/icme.2002.1035754
Google Scholar
[32]
D.B. Wheeler, S.N. Bailey, D.A. Guertin, A.E. Carpenter, C.O. Higgins, D.M. Sabatini, RNAi living-cell microarrays for loss-of-function screens in Drosophila melanogaster cells, Nat. Methods 1 (2004) 127-132.
DOI: 10.1038/nmeth711
Google Scholar
[33]
S.N. Bailey, S.M. Ali, A.E. Carpenter, C.O. Higgins, D.M. Sabatini, Microarrays of lentiviruses for gene function screens in immortalized and primary cells, Nat. Methods 3 (2006) 117-122.
DOI: 10.1038/nmeth848
Google Scholar
[34]
L.E. Cowen, A.E. Carpenter, O. Matangkasombut, G.R. Fink, S. Lindquist, Genetic architecture of Hsp90-dependent drug resistance, Eukaryot. Cell 5 (12) (2006) 2184-2188.
DOI: 10.1128/ec.00274-06
Google Scholar
[35]
A.E. Baltus, D.B. Menke, Y.C. Hu, M.L. Goodheart, A.E. Carpenter, D.G. de Rooij, D.C. Page, In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication, Nat. Genet. 38 (12) (2006) 1430-1434.
DOI: 10.1038/ng1919
Google Scholar
[36]
A. Sigal, R. Milo, A. Cohen, N. Geva-Zatorsky, Y. Klein, I. Alaluf, N. Swerdlin, N. Perzov, T. Danon, Y. Liron, T. Raveh, A.E. Carpenter, G. Lahav, U. Alon, Dynamic proteomics in individual human cells uncovers widespread cell-cycle dependence of nuclear proteins, Nat. Methods 3 (2006) 525-531.
DOI: 10.1038/nmeth892
Google Scholar
[37]
A. Khotanzad, Y.H. Hong, Invariant image recognition by zernike moments, IEEE, 12 (5) (1990) 489-497.
DOI: 10.1109/34.55109
Google Scholar
[38]
T. Suk, J. Flusser, B. Zitova, Moments and moment invariants in pattern recognition, Wiley and Sons Ltd (2009).
Google Scholar
[39]
M. Vorobyov, Shape classification using zernike moments, iCamp at University of California Irvine August 5 (2011).
Google Scholar