[1]
G. B. Busca, C. Resini, L. Arrighi, Technologies for the removal of phenol from fluid streams: a short review of recent developments, J. Hazard. Mater, 160 (2008) 265-288.
DOI: 10.1016/j.jhazmat.2008.03.045
Google Scholar
[2]
I. Ali, M. Asim, T. A. Khan, Low cost adsorbents for the removal of organic pollutants from wastewater, J. Environ. Manage. 113 (2012) 170-183.
DOI: 10.1016/j.jenvman.2012.08.028
Google Scholar
[3]
I. Ali, H. Y. Aboul-Enein, "Chiral, Pollutants: Distribution, Toxicity, and Analysis by Chromatography and Capillary Electrophoresis". John Wiley & Sons, 2004.
DOI: 10.1002/0470867825
Google Scholar
[4]
B. Damià, "Emerging Organic Pollutants in Waste Waters and Sludge", 5th Ed, Springer, Berlin, 2005.
Google Scholar
[5]
H. F. Herbert, C. On-chim, Toxicity of phenol towards aerobic biogranules, Water Res., 31 (1997) 2229-2242.
Google Scholar
[6]
F. A. Banat, B. Al-Bashir, S. Al-Asheh, O. Hayajneh, Adsorption of phenol by bentonite, Environ. Pollut. 107 (2000) 391-398.
DOI: 10.1016/s0269-7491(99)00173-6
Google Scholar
[7]
B. Ozkaya, Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models, J. Hazard. Mater. B129 (2006) 158-163.
DOI: 10.1016/j.jhazmat.2005.08.025
Google Scholar
[8]
G. G. Stavropoulos, P. Samaras, G. P. Sakellaropoulos, Effect of activated carbons modification on porosity, surface structure and phenol adsorption, J. Hazard. Mater, 151 (2008) 414-421.
DOI: 10.1016/j.jhazmat.2007.06.005
Google Scholar
[9]
I. I. Salame, T. J. Bandosz, Role of surface chemistry in adsorption of phenol on activated carbons, J Colloid Interf. Sci., 264 (2003) 307-312.
DOI: 10.1016/s0021-9797(03)00420-x
Google Scholar
[10]
S. P. Kamble, P. A. Mangrulkar, A. K. Bansiwal, S. S. Rayalu, Adsorption of phenol and o-chlorophenol on surface altered fly ash based molecular sieves, Chem. Eng. J., 138 (2008) 73-83.
DOI: 10.1016/j.cej.2007.05.030
Google Scholar
[11]
S. Asheh, F. Banat, A. Aitah, Adsorption of phenol using different types of activated bentonites, Sep. Purif. Technol. 33 (2003) 1-10.
DOI: 10.1016/s1383-5866(02)00180-6
Google Scholar
[12]
H. S. Gopalkrishnamoorthy, T. Shanmugam, Study of the removal of phenol from effluent of low temperature carbonization of lignite plant by resins, Indian J. Environ. Protection, 7 (1987) 352-354.
Google Scholar
[13]
K. H. Choy, J. F. Porter, G. McKay, Langmuir, isotherms models applied to the multicomponent sorption of acid dyes from effluent onto activated carbon, J. Chem. Eng. Data, 45 (2000) 575-584.
DOI: 10.1021/je9902894
Google Scholar
[14]
C. Namasivayam, N. Muniasamy, K. Gayatri, M. Rani, K. Ranganathan, Removal of dyes from aqueous solutions by cellulosic waste orange peel, Bioresource Technol. 57 (1996) 37-43.
DOI: 10.1016/0960-8524(96)00044-2
Google Scholar
[15]
E. Forgacs, T. Cserháti, G. Oros, Removal of synthetic dyes from wastewaters: A review, Environ Int. 30 (2004) 953-971.
DOI: 10.1016/j.envint.2004.02.001
Google Scholar
[16]
J. Sarma, A. Sarma, K. G. Bhattacharyya, Biosorption of commercial dyes on Azadiracta indica leaf powder: A case study with a basic dye Rhodamine B. Ind. Eng. Chem. Res, 47 (2008) 5433-5440.
DOI: 10.1021/ie071266i
Google Scholar
[17]
R. P. Han, Y. F. Wnag, P. Han, J. Yang, Y. S. Lu, Removal of methylene blue from aqueous solution by chaff in batch mode, J. Hazard. Mater. 137 (2006) 550-557.
DOI: 10.1016/j.jhazmat.2006.02.029
Google Scholar
[18]
Z. Aksu, Application of biosorption for the removal of organic pollutants: a review, Process Biochem. 40 (2005) 997-1026.
DOI: 10.1016/j.procbio.2004.04.008
Google Scholar
[19]
C. Gregorio, Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment, Prog. Polym. Sci. 30 (2005), 38-70.
Google Scholar
[20]
B. Adane, K. Siraj and N. Meka, Kinetic, equilibrium and thermodynamic study of 2-chlorophenol adsorption onto Ricinus communis pericarp activated carbon from aqueous solutions, Green Chemistry Letters and Reviews, 8 (2015) 1-12.
DOI: 10.1080/17518253.2015.1065348
Google Scholar
[21]
Marıia P. Elizalde-Gonza´lez, J. Mattusch, Alejandra A. Pela´ez-Cid, R. Wennrich, Characterization of adsorbent materials prepared from avocado kernel seeds: Natural, activated and carbonized forms, J. Anal. Appl. Pyrolysis, 78 (2007) 185–193
DOI: 10.1016/j.jaap.2006.06.008
Google Scholar
[22]
L. Khenniche, F. Aissani, Preparation and Characterization of Carbons from Coffee Residue: Adsorption of Salicylic Acid on the Prepared Carbons, J. Chem. Eng. Data, 55 (2010) 728-734.
DOI: 10.1021/je900426a
Google Scholar
[23]
A. L. Ahmad, M. M. Joh, J. A. Aziz, Preparation and characterization of activated carbon from oil palm wood and its evaluation on Methylene blue adsorption Dyes, Dyes and Pigment, 75 (2007) 263-272.
DOI: 10.1016/j.dyepig.2006.05.034
Google Scholar
[24]
M. S. Pakuła, M. Walczyk, S. Biniak, Voltammetric and FT-IR studies of modified activated carbon systems with phenol, 4-chlorophenol or 1,4-benzoquinone adsorbed from aqueous electrolyte solutions, Colloid Surface, 260 (2005) 145-155.
DOI: 10.1016/j.colsurfa.2005.03.013
Google Scholar
[25]
M. Sathishkumar, A. R. Binupriya, K. Vijayaraghavan, S. Yun, Two and three-parameter isothermal modeling for liquid-phase sorption of Procion Blue H-B by inactive mycelialbiomass of Panus fulvus, J. Chem. Technol. Biot. 82 (2007) 389 –398.
DOI: 10.1002/jctb.1682
Google Scholar
[26]
B. F. Noeline, D. M. Manohar, T. S. Anirudhan, Kinetic and equilibrium modelling of lead (II) sorption from water and wastewater by polymerized banana stem in a batch reactor, Sep. Purif. Technol. 45 (2005) 131-140.
DOI: 10.1016/j.seppur.2005.03.004
Google Scholar
[27]
I.I. Salame, T. J. Bandosz, Role of surface chemistry in adsorption of phenol on activated carbons, J. Colloid Interf. Sci. 264 (2003) 307-312.
DOI: 10.1016/s0021-9797(03)00420-x
Google Scholar
[28]
P. Podkoscielny, K. Nieszporek, Heterogeneity of activated carbons in adsorption of phenols from aqueous solutions-Comparison of experimental isotherm data and simulation predictions, Applied Surface Science, 253 (2007) 3563-3570.
DOI: 10.1016/j.apsusc.2006.07.064
Google Scholar
[29]
M. Dai, Mechanism of adsorption for Dyes on activated carbon, J. Colloid Interf. Sci. 198 (1998) 6-10.
Google Scholar
[30]
K.P. Singh, S. Sinha, P. Ojha, Liquid-phase adsorption of phenols using activated carbons derived from agricultural waste material, J. Hazard. Mater. 150 (2008) 626-641.
DOI: 10.1016/j.jhazmat.2007.05.017
Google Scholar
[31]
A. Behnamfard, M.M. Salarirad, Equilibrium and kinetic studies on free cyanide adsorption from aqueous solution by activated carbon, J. Hazard. Mater, 170 (2009) 127-133.
DOI: 10.1016/j.jhazmat.2009.04.124
Google Scholar
[32]
G. Ghanizadeh, G. Asgari, Adsorption kinetics of methylene blue and its removal from aqueous by bone charcoal, Reac. Kinet. Mech. Cat. 102 (2011) 127-142.
DOI: 10.1007/s11144-010-0247-2
Google Scholar
[33]
K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, Pore and solid diffusion kinetics in fixed-bed adsorption under constant pattern conditions, Ind. Eng. Chem. Fund., 5 (1966) 212-223.
DOI: 10.1021/i160018a011
Google Scholar
[34]
R.E. Treybal, "Mass transfer operations". 3rd Edition, McGraw-Hill: New York, 1980.
Google Scholar
[35]
M.I. Temkin, Adsorption equilibrium and the kinetics of processes on nonhomogeneous surfaces and in the interaction between adsorbed molecules, Zhurnal Fiziche- skoi Khimii, 15 (1941) 296-332.
Google Scholar
[36]
G. Blanchard, M. Maunaye, G. Martin, Removal of heavy metals from waters by means of natural zeolites, Water Res., 18 (1984) 1501-1507.
DOI: 10.1016/0043-1354(84)90124-6
Google Scholar
[37]
Y.S. Ho, J.C.Y. Ng, G. McKay, Kinetics of pollution sorption by biosorbents review, Sep. Purif. Method, 29 (2000) 189-232.
Google Scholar
[38]
B.H. Hameed, L.H. Chin, S. Rengaraj, Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust, Desalination, 225 (2008) 185-198.
DOI: 10.1016/j.desal.2007.04.095
Google Scholar
[39]
J. Wu, H.K. Yu, Biosorption of 2, 4 dichlorophenol from aqueous solution Phanerochaete chrysosporium biomass: Isotherms, kinetics and thermodynamics, J. Hazard. Mater. B137 (2006) 498-508.
DOI: 10.1016/j.jhazmat.2006.02.026
Google Scholar
[40]
Q. Fu, Y. Deng, H. Li, J. Liu, H. Hu, S. Chen, T. Sa, Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. kurstaki by clay minerals, Applied Surface Science, 255 (2009) 4551-4557.
DOI: 10.1016/j.apsusc.2008.11.075
Google Scholar
[41]
R.S. Juang, J.Y. Shiau, Adsorption isotherms of phenols from water onto macroreticular resins, J. Hazard. Mater. B70 (1999) 171-183.
DOI: 10.1016/s0304-3894(99)00152-1
Google Scholar
[42]
K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J. 156 (2010) 2-10.
Google Scholar