Kinetic and Thermodynamic Study of Phenol Removal from Water Using Activated Carbon Synthesizes from Avocado Kernel Seed

Article Preview

Abstract:

This study was aimed for removal of phenol from water using activated carbon synthesize from avocado kernel seeds by adsorption onto it. For adsorption process cleaned and washed avocado kernel seeds (Persea americana) were dried at 100°C in an oven overnight and carbonization was carried out by increasing the furnace temperature at a rate of 5 °C/min to a final temperature of 800 °C for 160 minutes. Then, the activated carbon was powdered and sieved, washed with distilled water until the solution pH reached 7.0. Optimization of activated carbon was performed through effects of solution pH, contact time; initial phenol concentration and temperature of the adsorption. The kinetic studies of the adsorption process were achieved by verifying various models and the data obtained was best fitted to pseudo-second-order kinetic model. The isotherms models were analyzed with Langmuir, Freundlich and Temkin to validate the adsorption process. It was found that Langmuir model was best fitted to the obtained result for both adsorbents.

Info:

* - Corresponding Author

[1] G. B. Busca, C. Resini, L. Arrighi, Technologies for the removal of phenol from fluid streams: a short review of recent developments, J. Hazard. Mater, 160 (2008) 265-288.

DOI: 10.1016/j.jhazmat.2008.03.045

Google Scholar

[2] I. Ali, M. Asim, T. A. Khan, Low cost adsorbents for the removal of organic pollutants from wastewater, J. Environ. Manage. 113 (2012) 170-183.

DOI: 10.1016/j.jenvman.2012.08.028

Google Scholar

[3] I. Ali, H. Y. Aboul-Enein, "Chiral, Pollutants: Distribution, Toxicity, and Analysis by Chromatography and Capillary Electrophoresis". John Wiley & Sons, 2004.

DOI: 10.1002/0470867825

Google Scholar

[4] B. Damià, "Emerging Organic Pollutants in Waste Waters and Sludge", 5th Ed, Springer, Berlin, 2005.

Google Scholar

[5] H. F. Herbert, C. On-chim, Toxicity of phenol towards aerobic biogranules, Water Res., 31 (1997) 2229-2242.

Google Scholar

[6] F. A. Banat, B. Al-Bashir, S. Al-Asheh, O. Hayajneh, Adsorption of phenol by bentonite, Environ. Pollut. 107 (2000) 391-398.

DOI: 10.1016/s0269-7491(99)00173-6

Google Scholar

[7] B. Ozkaya, Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models, J. Hazard. Mater. B129 (2006) 158-163.

DOI: 10.1016/j.jhazmat.2005.08.025

Google Scholar

[8] G. G. Stavropoulos, P. Samaras, G. P. Sakellaropoulos, Effect of activated carbons modification on porosity, surface structure and phenol adsorption, J. Hazard. Mater, 151 (2008) 414-421.

DOI: 10.1016/j.jhazmat.2007.06.005

Google Scholar

[9] I. I. Salame, T. J. Bandosz, Role of surface chemistry in adsorption of phenol on activated carbons, J Colloid Interf. Sci., 264 (2003) 307-312.

DOI: 10.1016/s0021-9797(03)00420-x

Google Scholar

[10] S. P. Kamble, P. A. Mangrulkar, A. K. Bansiwal, S. S. Rayalu, Adsorption of phenol and o-chlorophenol on surface altered fly ash based molecular sieves, Chem. Eng. J., 138 (2008) 73-83.

DOI: 10.1016/j.cej.2007.05.030

Google Scholar

[11] S. Asheh, F. Banat, A. Aitah, Adsorption of phenol using different types of activated bentonites, Sep. Purif. Technol. 33 (2003) 1-10.

DOI: 10.1016/s1383-5866(02)00180-6

Google Scholar

[12] H. S. Gopalkrishnamoorthy, T. Shanmugam, Study of the removal of phenol from effluent of low temperature carbonization of lignite plant by resins, Indian J. Environ. Protection, 7 (1987) 352-354.

Google Scholar

[13] K. H. Choy, J. F. Porter, G. McKay, Langmuir, isotherms models applied to the multicomponent sorption of acid dyes from effluent onto activated carbon, J. Chem. Eng. Data, 45 (2000) 575-584.

DOI: 10.1021/je9902894

Google Scholar

[14] C. Namasivayam, N. Muniasamy, K. Gayatri, M. Rani, K. Ranganathan, Removal of dyes from aqueous solutions by cellulosic waste orange peel, Bioresource Technol. 57 (1996) 37-43.

DOI: 10.1016/0960-8524(96)00044-2

Google Scholar

[15] E. Forgacs, T. Cserháti, G. Oros, Removal of synthetic dyes from wastewaters: A review, Environ Int. 30 (2004) 953-971.

DOI: 10.1016/j.envint.2004.02.001

Google Scholar

[16] J. Sarma, A. Sarma, K. G. Bhattacharyya, Biosorption of commercial dyes on Azadiracta indica leaf powder: A case study with a basic dye Rhodamine B. Ind. Eng. Chem. Res, 47 (2008) 5433-5440.

DOI: 10.1021/ie071266i

Google Scholar

[17] R. P. Han, Y. F. Wnag, P. Han, J. Yang, Y. S. Lu, Removal of methylene blue from aqueous solution by chaff in batch mode, J. Hazard. Mater. 137 (2006) 550-557.

DOI: 10.1016/j.jhazmat.2006.02.029

Google Scholar

[18] Z. Aksu, Application of biosorption for the removal of organic pollutants: a review, Process Biochem. 40 (2005) 997-1026.

DOI: 10.1016/j.procbio.2004.04.008

Google Scholar

[19] C. Gregorio, Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment, Prog. Polym. Sci. 30 (2005), 38-70.

Google Scholar

[20] B. Adane, K. Siraj and N. Meka, Kinetic, equilibrium and thermodynamic study of 2-chlorophenol adsorption onto Ricinus communis pericarp activated carbon from aqueous solutions, Green Chemistry Letters and Reviews, 8 (2015) 1-12.

DOI: 10.1080/17518253.2015.1065348

Google Scholar

[21] Marıia P. Elizalde-Gonza´lez, J. Mattusch, Alejandra A. Pela´ez-Cid, R. Wennrich, Characterization of adsorbent materials prepared from avocado kernel seeds: Natural, activated and carbonized forms, J. Anal. Appl. Pyrolysis, 78 (2007) 185–193

DOI: 10.1016/j.jaap.2006.06.008

Google Scholar

[22] L. Khenniche, F. Aissani, Preparation and Characterization of Carbons from Coffee Residue: Adsorption of Salicylic Acid on the Prepared Carbons, J. Chem. Eng. Data, 55 (2010) 728-734.

DOI: 10.1021/je900426a

Google Scholar

[23] A. L. Ahmad, M. M. Joh, J. A. Aziz, Preparation and characterization of activated carbon from oil palm wood and its evaluation on Methylene blue adsorption Dyes, Dyes and Pigment, 75 (2007) 263-272.

DOI: 10.1016/j.dyepig.2006.05.034

Google Scholar

[24] M. S. Pakuła, M. Walczyk, S. Biniak, Voltammetric and FT-IR studies of modified activated carbon systems with phenol, 4-chlorophenol or 1,4-benzoquinone adsorbed from aqueous electrolyte solutions, Colloid Surface, 260 (2005) 145-155.

DOI: 10.1016/j.colsurfa.2005.03.013

Google Scholar

[25] M. Sathishkumar, A. R. Binupriya, K. Vijayaraghavan, S. Yun, Two and three-parameter isothermal modeling for liquid-phase sorption of Procion Blue H-B by inactive mycelialbiomass of Panus fulvus, J. Chem. Technol. Biot. 82 (2007) 389 –398.

DOI: 10.1002/jctb.1682

Google Scholar

[26] B. F. Noeline, D. M. Manohar, T. S. Anirudhan, Kinetic and equilibrium modelling of lead (II) sorption from water and wastewater by polymerized banana stem in a batch reactor, Sep. Purif. Technol. 45 (2005) 131-140.

DOI: 10.1016/j.seppur.2005.03.004

Google Scholar

[27] I.I. Salame, T. J. Bandosz, Role of surface chemistry in adsorption of phenol on activated carbons, J. Colloid Interf. Sci. 264 (2003) 307-312.

DOI: 10.1016/s0021-9797(03)00420-x

Google Scholar

[28] P. Podkoscielny, K. Nieszporek, Heterogeneity of activated carbons in adsorption of phenols from aqueous solutions-Comparison of experimental isotherm data and simulation predictions, Applied Surface Science, 253 (2007) 3563-3570.

DOI: 10.1016/j.apsusc.2006.07.064

Google Scholar

[29] M. Dai, Mechanism of adsorption for Dyes on activated carbon, J. Colloid Interf. Sci. 198 (1998) 6-10.

Google Scholar

[30] K.P. Singh, S. Sinha, P. Ojha, Liquid-phase adsorption of phenols using activated carbons derived from agricultural waste material, J. Hazard. Mater. 150 (2008) 626-641.

DOI: 10.1016/j.jhazmat.2007.05.017

Google Scholar

[31] A. Behnamfard, M.M. Salarirad, Equilibrium and kinetic studies on free cyanide adsorption from aqueous solution by activated carbon, J. Hazard. Mater, 170 (2009) 127-133.

DOI: 10.1016/j.jhazmat.2009.04.124

Google Scholar

[32] G. Ghanizadeh, G. Asgari, Adsorption kinetics of methylene blue and its removal from aqueous by bone charcoal, Reac. Kinet. Mech. Cat. 102 (2011) 127-142.

DOI: 10.1007/s11144-010-0247-2

Google Scholar

[33] K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, Pore and solid diffusion kinetics in fixed-bed adsorption under constant pattern conditions, Ind. Eng. Chem. Fund., 5 (1966) 212-223.

DOI: 10.1021/i160018a011

Google Scholar

[34] R.E. Treybal, "Mass transfer operations". 3rd Edition, McGraw-Hill: New York, 1980.

Google Scholar

[35] M.I. Temkin, Adsorption equilibrium and the kinetics of processes on nonhomogeneous surfaces and in the interaction between adsorbed molecules, Zhurnal Fiziche- skoi Khimii, 15 (1941) 296-332.

Google Scholar

[36] G. Blanchard, M. Maunaye, G. Martin, Removal of heavy metals from waters by means of natural zeolites, Water Res., 18 (1984) 1501-1507.

DOI: 10.1016/0043-1354(84)90124-6

Google Scholar

[37] Y.S. Ho, J.C.Y. Ng, G. McKay, Kinetics of pollution sorption by biosorbents review, Sep. Purif. Method, 29 (2000) 189-232.

Google Scholar

[38] B.H. Hameed, L.H. Chin, S. Rengaraj, Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust, Desalination, 225 (2008) 185-198.

DOI: 10.1016/j.desal.2007.04.095

Google Scholar

[39] J. Wu, H.K. Yu, Biosorption of 2, 4 dichlorophenol from aqueous solution Phanerochaete chrysosporium biomass: Isotherms, kinetics and thermodynamics, J. Hazard. Mater. B137 (2006) 498-508.

DOI: 10.1016/j.jhazmat.2006.02.026

Google Scholar

[40] Q. Fu, Y. Deng, H. Li, J. Liu, H. Hu, S. Chen, T. Sa, Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. kurstaki by clay minerals, Applied Surface Science, 255 (2009) 4551-4557.

DOI: 10.1016/j.apsusc.2008.11.075

Google Scholar

[41] R.S. Juang, J.Y. Shiau, Adsorption isotherms of phenols from water onto macroreticular resins, J. Hazard. Mater. B70 (1999) 171-183.

DOI: 10.1016/s0304-3894(99)00152-1

Google Scholar

[42] K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J. 156 (2010) 2-10.

Google Scholar