Antioxidant Capacity and Phenolic Contents of Three Quercus Species

Article Preview

Abstract:

The antioxidant capability and phenolic contents of ethanol extracts (free phenolics) and ethyl acetate extracts (bound phenolics) of three Quercus species were estimated in this work. The antioxidant activities were examined by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) free radical, reducing power and b-carotene bleaching methods. HPLC was employed to detect major phenolic acids. The leaf extract of Q. salicina contained maximum total phenolics while the highest total flavonoid content was found in the leaf extract of Q. serrata. The antioxidant activities varied among three species. Bark extract of Q. salicina was the most potential and it was closed to levels of the standard antioxidative dibutyl hydroxytoluene (BHT). The bark extract of Q. serrata also showed promising antioxidant activities despite their eminence was negligibly lower than Q. salicina. Stronger antioxidant activities of free phenolics than those of the bound phenolics may be attributed to higher quantities of free phenolics in the barks of Quercus species, however total flavonoids may not contribute a critical role. By HPLC analysis, thirteen phenolic acids were detected in the leaf and bark extracts. Of them, Q. salicina showed maximum in number (ten compounds) and quantities of detected phenolic acids. Ellagic, chlorogenic and benzoic acids were dominant in Quercus species. Findings of this study revealed that leaves and barks of three Quercus species are rich source of antioxidants, and Q. salicina is the most promising and should be elaborated to exploit its pharmaceutical properties.

Info:

* - Corresponding Author

[1] M. Bouras, M. Chadni, F.J. Barba, N. Grimi, O. Bals, E. Vorobiev, Optimization of microwave-assisted extraction of polyphenols from Quercus bark, Ind. Crop. Prod. 77 (2015) 590-601.

DOI: 10.1016/j.indcrop.2015.09.018

Google Scholar

[2] R. Singh, N. Kumari, Comparative determination of phytochemicals and antioxidant activity from leaf and fruit of Sapindus mukorrossi Gaertn. – Avaluable medicinal tree, Ind. Crop. Prod. 73 (2015) 1-8.

DOI: 10.1016/j.indcrop.2015.04.012

Google Scholar

[3] C. Ao, A. Li, A.A, Elzaawely, T.D Xuan, S. Tawata. Evaluation of antioxidant and antibacterial activities of Ficus microcarrpa L. fil. Extract, Food Control. 19(10) (2008) 940-948.

DOI: 10.1016/j.foodcont.2007.09.007

Google Scholar

[4] A. Michalak, Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress, Pol. J. Environ. Stud. 15(4) (2006) 523-530.

Google Scholar

[5] C.D Stalikas, Extraction, separation, and detection methods for phenolic acids and flavonoids, J. Sep. Sci. 30(18) 2007 3268-3295.

DOI: 10.1002/jssc.200700261

Google Scholar

[6] S. Otles, I. Selek, Phenolic compounds and antioxidant activities of chestnut (Castanea sativa Mill.) fruits, Qual. Assur. Saf. Crop. 4(4) 2012 199-105.

DOI: 10.1111/j.1757-837x.2012.00180.x

Google Scholar

[7] C.A. Rice-Evans, N.J. Miller, G. Paganga, Antioxidant properties of phenolic compound, Trends Plant Sci. 2(4) (1997) 152-159.

DOI: 10.1016/s1360-1385(97)01018-2

Google Scholar

[8] J.C.M Barreira, I.C.F.R Ferreira, M.B.P.P Oliveira, J.A. Pereira, Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit, Food Chem. 107(3) 2008 1106-1113.

DOI: 10.1016/j.foodchem.2007.09.030

Google Scholar

[9] R. Apak, K. Güçlü, B. Demirata, M. Özyürek, S.E. Çelik, B. Bektaşoğlu, K.I. Berker, D. Özyurt, Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay, Molecules 12(7) (2007) 1496-1547.

DOI: 10.3390/12071496

Google Scholar

[10] A. A. Elzaawely, T.D. Xuan, S. Tawata, Essential oils, kava pyrones and phenolic compounds from leaves and rhizomes of Alpinia zerumbet (Pers.) B.L. Burtt. & R.M.Sm. and their antioxidant activity, Food Chem. 103(2) (2007) 486-494.

DOI: 10.1016/j.foodchem.2006.08.025

Google Scholar

[11] A.W. Indrianingsih, S. Tachibana, R. T. Dewi, K. Itoh, Antioxidant and a-glucosidase inhibitor activities of natural compounds isolated from Quercus gilva Blume leaves, Asian Pac. J. Trop. Biomed. 5(9) (2015) 748-755.

DOI: 10.1016/j.apjtb.2015.07.004

Google Scholar

[12] W.S. Judd, C.S. Campbell, E.A. Kellogg, P.F. Stevens, M.J. Donoghue, Plant systematics A phylogenetic approach. 2nd ed. Sinauer Associates, Inc. Publishers, Sunderland, Masachusetts U.S.A, 2002.

DOI: 10.1080/10635150490445878

Google Scholar

[13] J.A. Sanchez-Burgosa, M.V. Ramirez-Maresb, M.M. Larrosac, J.A. Gallegos-Infantea, R.F. Gonzalez-Laredoa, L. Medina-Torresd, N.E. Rocha-Guzmana, Antioxidant, antimicrobial, antitopoisomerase and gastroprotective effect ofherbal infusions from four Quercus species, Ind. Crop. Prod. 42 (2013) 57-62.

DOI: 10.1016/j.indcrop.2012.05.017

Google Scholar

[14] Z.A. Kuliev, A.D. Vdovin, N.D. Abdullaev, A.B. Makhmatkulov, V.M. Malikov, Study of the catechins and proanthocyanidins of Quercus robur, Chem. Nat. Compd. 33(6) (1997) 642-652.

DOI: 10.1007/bf02249631

Google Scholar

[15] M. Bouras, M. Chadni, F.J. Barba, N. Grimi, O. Bals, E. Vorobiev, Optimization of microwave-assisted extraction of polyphenols from Quercus bark, Ind. Crop. Prod. 77 (2015) 590-601.

DOI: 10.1016/j.indcrop.2015.09.018

Google Scholar

[16] J.I. Kim, H.h. Kim, S. Kim, K.T. Lee, I.H. Ham, W.K. Whang, Antioxidative compounds from Quercus salicina Blume stem, Arch. Pharm. Res. 31(3) (2008) 274-78.

DOI: 10.1007/s12272-001-1152-2

Google Scholar

[17] C.C. Shen, K.Y. Hong, J. Chen, L.J. Zhang, Z.H. Lin, H.T. Huang, H.L. Cheng, Y.H. Kuo, Antioxidant and anti-nitric oxide components from Quercus glauca, Chem. Pharm. Bull. 60(7) (2012) 924-929.

DOI: 10.1248/cpb.c12-00174

Google Scholar

[18] K. Iwatsuki, D.E. Boufford, DE, H. Ohba, Flora of Japan Vol II, Angiospermae Dicotyledoneae Archichlamydeae (a). Kodansha Ltd., 12-21 Otowa 2-chome, Bunkyo-ku, Tokyo 112-8001, Japan, 2006.

Google Scholar

[19] K. Maeto, K. Ozaki, Prolonged diapause of specialist seed-feeders makes predator satiation unstable in masting of Quercus crispula, Oecologia 137 (2003) 392-398.

DOI: 10.1007/s00442-003-1381-6

Google Scholar

[20] H. Sasamoto, Y. Hosoi. Callus proliferation from the protoplasts of embryogenic cells of Quercus serrata, Plant Cell Tiss. Org. 29 (1992) 241-245.

DOI: 10.1007/bf00034359

Google Scholar

[21] M. T. Moriyama, K. Suga, K. Miyazawa, T. Tanaka, M. Higashioka, K. Noda, M. Oka, M. Tanaka, K. Suzuki, Inhibitions of urinary oxidative stress and renal calcium level by an extract of Quercus salicina Blume/Quercus stenophylla Makino in a rat calcium oxalate urolithiasis model, Int. J. Urol. 16(4) (2009) 397-401.

DOI: 10.1111/j.1442-2042.2009.02268.x

Google Scholar

[22] T.D. Xuan, E. Tsuzuki, H. Terao, M. Matsuo, T.D. Khanh, Correlation between growth inhibitory exhibition and suspected allelochemicals (Phenolic compounds) in the extract of Alfalfa (Medicago sativa L.), Plant Prod. Sci. 6(3) (2003) 165-171.

DOI: 10.1626/pps.6.165

Google Scholar

[23] F. Medini, H. Fellah, R. Ksouri, C. Abdelly, Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum, Journal of Taibah University for Science. 8(3) (2014) 216-224.

DOI: 10.1016/j.jtusci.2014.01.003

Google Scholar

[24] A. Djeridane, M. Yousfi, B. Nadjemi, D. Boutassouna, P. Stocker, N, Vidal. Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds, Food Chem. 97(4) (2006) 654-660.

DOI: 10.1016/j.foodchem.2005.04.028

Google Scholar

[25] R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C.A. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med. 26(9–10) (1999) 1231-1237.

DOI: 10.1016/s0891-5849(98)00315-3

Google Scholar

[26] A.A. Elzaawely, S. Tawata, Antioxidant capacity and phenolic content of Rumex dentatus L. grown in Egypt, J. Crop Sci. Biotechnol. 15(1) (2012) 59-64.

DOI: 10.1007/s12892-011-0063-x

Google Scholar

[27] Z. L. Yu, H.X. Gao, Z. Zhang, H. He, Q. He, L.R. Jia, W.C. Zeng, Inhibitory effects of Ligustrum robustum (Roxb.) Blume extract on α-amylase and α-glucosidase, J. Funct. Foods 19 (2015) 204-213.

DOI: 10.1016/j.jff.2015.09.048

Google Scholar

[28] T.K. Hyun, H.C. Kim, Y.J. Ko, J.S. Kim, Antioxidant, ∝-glucosidase inhibitory
and anti-inflammatory effects of aerial parts extract from Korean crowberry (Empetrum nigrum var. japonicum), Saudi Journal of Biological Sciences (2015) Available:

DOI: 10.1016/j.sjbs.2015.02.008

Google Scholar

[29] S.A.O. Santos, P.C.R.O. Pinto, A.J.D. Silvestre, C.P. Neto, Chemical composition and antioxidant activity of phenolic extracts of cork from Quercus suber L., Ind. Crop. Prod. 31 (2010) 521-526.

DOI: 10.1016/j.indcrop.2010.02.001

Google Scholar

[30] B.M. Popović, D. Štajner, R. Ždero, S. Orlović, Z. Galić, Antioxidant characterization of oak extracts combining spectrophotometric assays and chemometrics, The Scientific World Journal (2013)134656. Available:

DOI: 10.1155/2013/134656

Google Scholar

[31] J.A. Sanchez-Burgosa, M.V. Ramirez-Maresb, M.M. Larrosac, J.A. Gallegos-Infantea, R.F. Gonzalez-Laredoa, L. Medina-Torresd, N.E. Rocha-Guzmana, Antioxidant, antimicrobial, antitopoisomerase and gastroprotective effect ofherbal infusions from four Quercus species, Ind. Crop. Prod. 42 (2013) 57-62.

DOI: 10.1016/j.indcrop.2012.05.017

Google Scholar

[32] Y. Cai, Q. Luo, M. Sun, H. Corke, Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer, Life Sci. 74 (2004) 2157-2184.

DOI: 10.1016/j.lfs.2003.09.047

Google Scholar

[33] N. Saeed, M.R. Khan, M. Shabbir, Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L, Bio. Med. Central. 12 (2012) 221.

DOI: 10.1186/1472-6882-12-221

Google Scholar

[34] R.A. Khan, M.R. Khan, S. Sahreen, M. Ahmed, Assessment of flavonoids contents and in vitro antioxidant activity of Launaea procumbens, Chem. Cent. J. 6 (2012) 43.

DOI: 10.1186/1752-153x-6-43

Google Scholar

[35] R. Touati, S.A.O. Santos, S.M. Rochac, K. Belhamel, A.J.D. Silvestre, The potential of cork from Quercus suber L. grown in Algeria as a source of bioactive lipophilic and phenolic compounds, Ind. Crop. Prod. 76 (2015) 936-945.

DOI: 10.1016/j.indcrop.2015.07.074

Google Scholar

[36] J. Sun, Y.F. Chu, X. Wu, R. H. Liu, Antioxidant and antiproliferative activities of common fruits, J. Agric. Food Chem. 50(25) (2002) 7449-7454.

DOI: 10.1021/jf0207530

Google Scholar

[37] N. Dolai, I. Karmakar, R.B.S. Kumar, B. Kar, A. Bala, P.K. Haldar, Free radical scavenging activity of Castanopsis indica in mediating hepatoprotective activity of carbon tetrachloride intoxicated rats, Asian Pac. J. Trop. Biomed. 2(1) (2012) S242-S251.

DOI: 10.1016/s2221-1691(12)60168-3

Google Scholar

[38] F.A.M. Silva, F. Borges, C. Guimarães, J.L.F.C. Lima, C. Matos, S. Reis, Phenolic acids and derivatives: studies on the relationship among structure, radical scavenging activity, and physicochemical parameters, J. Agric. Food Chem. 48(6) (2000) 2122-2126.

DOI: 10.1021/jf9913110

Google Scholar

[39] E. Bendary, R.R. Francis, H.M.G. Ali, M.I. Sarwat, S. El Hady, Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds, Ann. Agri. Sci. 58(2) (2013) 173-181.

DOI: 10.1016/j.aoas.2013.07.002

Google Scholar

[40] D.T. Khang, T.N. Dung, A.A. Elzaawely, T.D. Xuan, Phenolic profiles and antioxidant activity of germinated legumes, Foods 5 (2016) 27.

DOI: 10.3390/foods5020027

Google Scholar

[41] J. Chompoo, A. Upadhyay, M. Fukuta, S. Tawata, Effect of Alpinia zerumbet components on antioxidant and skin diseases-related enzymes, BMC Complement Altern. Med. 12 (2012) 106.

DOI: 10.1186/1472-6882-12-106

Google Scholar

[42] Q.D. Do, A.E. Angkawijaya, P.L Tran-Nguyen, L.H. Huynh, F.E. Soetaredjo, S. Ismadji, Y.H. Ju, Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatic, J. Food Drug Anal. 22(3) (2014) 296-302.

DOI: 10.1016/j.jfda.2013.11.001

Google Scholar

[43] E. Bursal, E. Köksal, Evaluation of reducing power and radical scavenging activities of water and ethanol extracts from sumac (Rhus coriaria L.), Food Res. Int. 44(7) (2011) 2217-2221.

DOI: 10.1016/j.foodres.2010.11.001

Google Scholar

[44] A. Indrianingsih, S. Tachibana, K. Itoh, In vitro evaluation of antioxidant and α-glucosidase inhibitory assay of several tropical and subtropical plants, Procedia Environ. Sci. 28 (2015b) 639-648.

DOI: 10.1016/j.proenv.2015.07.075

Google Scholar

[45] L. Barros, M.J. Ferreira, B. Queirós, I.C.F.R. Ferreira, P. Baptista, Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities, Food Chem. 103(2) (2007) 413-419.

DOI: 10.1016/j.foodchem.2006.07.038

Google Scholar

[46] J.C.M. Barreira, I.C.F.R. Ferreira, M.B.P.P. Oliveira, J.A. Pereira, Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit, Food Chem. 107 (2008) 1106-1113.

DOI: 10.1016/j.foodchem.2007.09.030

Google Scholar

[47] L. Custódio, J. Patarra, F. Alberício, N. da Rosa Neng, J.M.F. Nogueira, A. Romano, Phenolic composition, antioxidant potential and in vitro inhibitory activity of leaves and acorns of Quercus suber on key enzymes relevant for hyperglycemia and Alzheimer's disease, Ind. Crop. Prod. 64 (2015) 45-51.

DOI: 10.1016/j.indcrop.2014.11.001

Google Scholar

[48] L. Sepúlveda, A. Ascacio, R. Rodríguez-Herrera, A. Aguilera-Carbó, C.N. Aguilar, Ellagic acid: Biological properties and biotechnological development for production processes, Afr. J. Biotechnol. 10(22) (2011) 4518-4523.

DOI: 10.1002/chin.201250260

Google Scholar

[49] N.L. Chaitra, R.V. Raivishankar, Anti-HIV-1 Activity of Ellagic acid isolated from Terminalia paniculata, Free Rad Antiox. 6(1) (2016) 101-108.

DOI: 10.5530/fra.2016.1.12

Google Scholar

[50] A. Fernandes, I. Fernandes, L. Cruz, N. Mateus, M. Cabral, V. de Freitas, Antioxidant and bological properties of bioactive phenolic compounds from Quercus suber L, J. Agric. Food Chem. 57(23) (2009) 11154-11160.

DOI: 10.1021/jf902093m

Google Scholar

[51] R. Niggeweg, A.J. Michael, C. Martin, Engineering plants with increased levels of the antioxidant chlorogenic acid, Nat. Biotechnol. 22(6) (2004) 746-754.

DOI: 10.1038/nbt966

Google Scholar

[52] A.V. Qualley, J.R. Widhalm, F. Adebesin, C.M. Kish, N. Dudareva, Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants, PNAS. 109(40) (2012) 16383–16388.

DOI: 10.1073/pnas.1211001109

Google Scholar

[53] J.R. Widhalm, N.A. Dudareva, A familiar ring to it: Biosynthesis of plant Benzoic acids, Molecular Plant. 8(1) (2015) 83-97.

DOI: 10.1016/j.molp.2014.12.001

Google Scholar