[1]
M. Bouras, M. Chadni, F.J. Barba, N. Grimi, O. Bals, E. Vorobiev, Optimization of microwave-assisted extraction of polyphenols from Quercus bark, Ind. Crop. Prod. 77 (2015) 590-601.
DOI: 10.1016/j.indcrop.2015.09.018
Google Scholar
[2]
R. Singh, N. Kumari, Comparative determination of phytochemicals and antioxidant activity from leaf and fruit of Sapindus mukorrossi Gaertn. – Avaluable medicinal tree, Ind. Crop. Prod. 73 (2015) 1-8.
DOI: 10.1016/j.indcrop.2015.04.012
Google Scholar
[3]
C. Ao, A. Li, A.A, Elzaawely, T.D Xuan, S. Tawata. Evaluation of antioxidant and antibacterial activities of Ficus microcarrpa L. fil. Extract, Food Control. 19(10) (2008) 940-948.
DOI: 10.1016/j.foodcont.2007.09.007
Google Scholar
[4]
A. Michalak, Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress, Pol. J. Environ. Stud. 15(4) (2006) 523-530.
Google Scholar
[5]
C.D Stalikas, Extraction, separation, and detection methods for phenolic acids and flavonoids, J. Sep. Sci. 30(18) 2007 3268-3295.
DOI: 10.1002/jssc.200700261
Google Scholar
[6]
S. Otles, I. Selek, Phenolic compounds and antioxidant activities of chestnut (Castanea sativa Mill.) fruits, Qual. Assur. Saf. Crop. 4(4) 2012 199-105.
DOI: 10.1111/j.1757-837x.2012.00180.x
Google Scholar
[7]
C.A. Rice-Evans, N.J. Miller, G. Paganga, Antioxidant properties of phenolic compound, Trends Plant Sci. 2(4) (1997) 152-159.
DOI: 10.1016/s1360-1385(97)01018-2
Google Scholar
[8]
J.C.M Barreira, I.C.F.R Ferreira, M.B.P.P Oliveira, J.A. Pereira, Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit, Food Chem. 107(3) 2008 1106-1113.
DOI: 10.1016/j.foodchem.2007.09.030
Google Scholar
[9]
R. Apak, K. Güçlü, B. Demirata, M. Özyürek, S.E. Çelik, B. Bektaşoğlu, K.I. Berker, D. Özyurt, Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay, Molecules 12(7) (2007) 1496-1547.
DOI: 10.3390/12071496
Google Scholar
[10]
A. A. Elzaawely, T.D. Xuan, S. Tawata, Essential oils, kava pyrones and phenolic compounds from leaves and rhizomes of Alpinia zerumbet (Pers.) B.L. Burtt. & R.M.Sm. and their antioxidant activity, Food Chem. 103(2) (2007) 486-494.
DOI: 10.1016/j.foodchem.2006.08.025
Google Scholar
[11]
A.W. Indrianingsih, S. Tachibana, R. T. Dewi, K. Itoh, Antioxidant and a-glucosidase inhibitor activities of natural compounds isolated from Quercus gilva Blume leaves, Asian Pac. J. Trop. Biomed. 5(9) (2015) 748-755.
DOI: 10.1016/j.apjtb.2015.07.004
Google Scholar
[12]
W.S. Judd, C.S. Campbell, E.A. Kellogg, P.F. Stevens, M.J. Donoghue, Plant systematics A phylogenetic approach. 2nd ed. Sinauer Associates, Inc. Publishers, Sunderland, Masachusetts U.S.A, 2002.
DOI: 10.1080/10635150490445878
Google Scholar
[13]
J.A. Sanchez-Burgosa, M.V. Ramirez-Maresb, M.M. Larrosac, J.A. Gallegos-Infantea, R.F. Gonzalez-Laredoa, L. Medina-Torresd, N.E. Rocha-Guzmana, Antioxidant, antimicrobial, antitopoisomerase and gastroprotective effect ofherbal infusions from four Quercus species, Ind. Crop. Prod. 42 (2013) 57-62.
DOI: 10.1016/j.indcrop.2012.05.017
Google Scholar
[14]
Z.A. Kuliev, A.D. Vdovin, N.D. Abdullaev, A.B. Makhmatkulov, V.M. Malikov, Study of the catechins and proanthocyanidins of Quercus robur, Chem. Nat. Compd. 33(6) (1997) 642-652.
DOI: 10.1007/bf02249631
Google Scholar
[15]
M. Bouras, M. Chadni, F.J. Barba, N. Grimi, O. Bals, E. Vorobiev, Optimization of microwave-assisted extraction of polyphenols from Quercus bark, Ind. Crop. Prod. 77 (2015) 590-601.
DOI: 10.1016/j.indcrop.2015.09.018
Google Scholar
[16]
J.I. Kim, H.h. Kim, S. Kim, K.T. Lee, I.H. Ham, W.K. Whang, Antioxidative compounds from Quercus salicina Blume stem, Arch. Pharm. Res. 31(3) (2008) 274-78.
DOI: 10.1007/s12272-001-1152-2
Google Scholar
[17]
C.C. Shen, K.Y. Hong, J. Chen, L.J. Zhang, Z.H. Lin, H.T. Huang, H.L. Cheng, Y.H. Kuo, Antioxidant and anti-nitric oxide components from Quercus glauca, Chem. Pharm. Bull. 60(7) (2012) 924-929.
DOI: 10.1248/cpb.c12-00174
Google Scholar
[18]
K. Iwatsuki, D.E. Boufford, DE, H. Ohba, Flora of Japan Vol II, Angiospermae Dicotyledoneae Archichlamydeae (a). Kodansha Ltd., 12-21 Otowa 2-chome, Bunkyo-ku, Tokyo 112-8001, Japan, 2006.
Google Scholar
[19]
K. Maeto, K. Ozaki, Prolonged diapause of specialist seed-feeders makes predator satiation unstable in masting of Quercus crispula, Oecologia 137 (2003) 392-398.
DOI: 10.1007/s00442-003-1381-6
Google Scholar
[20]
H. Sasamoto, Y. Hosoi. Callus proliferation from the protoplasts of embryogenic cells of Quercus serrata, Plant Cell Tiss. Org. 29 (1992) 241-245.
DOI: 10.1007/bf00034359
Google Scholar
[21]
M. T. Moriyama, K. Suga, K. Miyazawa, T. Tanaka, M. Higashioka, K. Noda, M. Oka, M. Tanaka, K. Suzuki, Inhibitions of urinary oxidative stress and renal calcium level by an extract of Quercus salicina Blume/Quercus stenophylla Makino in a rat calcium oxalate urolithiasis model, Int. J. Urol. 16(4) (2009) 397-401.
DOI: 10.1111/j.1442-2042.2009.02268.x
Google Scholar
[22]
T.D. Xuan, E. Tsuzuki, H. Terao, M. Matsuo, T.D. Khanh, Correlation between growth inhibitory exhibition and suspected allelochemicals (Phenolic compounds) in the extract of Alfalfa (Medicago sativa L.), Plant Prod. Sci. 6(3) (2003) 165-171.
DOI: 10.1626/pps.6.165
Google Scholar
[23]
F. Medini, H. Fellah, R. Ksouri, C. Abdelly, Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum, Journal of Taibah University for Science. 8(3) (2014) 216-224.
DOI: 10.1016/j.jtusci.2014.01.003
Google Scholar
[24]
A. Djeridane, M. Yousfi, B. Nadjemi, D. Boutassouna, P. Stocker, N, Vidal. Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds, Food Chem. 97(4) (2006) 654-660.
DOI: 10.1016/j.foodchem.2005.04.028
Google Scholar
[25]
R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C.A. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med. 26(9–10) (1999) 1231-1237.
DOI: 10.1016/s0891-5849(98)00315-3
Google Scholar
[26]
A.A. Elzaawely, S. Tawata, Antioxidant capacity and phenolic content of Rumex dentatus L. grown in Egypt, J. Crop Sci. Biotechnol. 15(1) (2012) 59-64.
DOI: 10.1007/s12892-011-0063-x
Google Scholar
[27]
Z. L. Yu, H.X. Gao, Z. Zhang, H. He, Q. He, L.R. Jia, W.C. Zeng, Inhibitory effects of Ligustrum robustum (Roxb.) Blume extract on α-amylase and α-glucosidase, J. Funct. Foods 19 (2015) 204-213.
DOI: 10.1016/j.jff.2015.09.048
Google Scholar
[28]
T.K. Hyun, H.C. Kim, Y.J. Ko, J.S. Kim, Antioxidant, ∝-glucosidase inhibitory
and anti-inflammatory effects of aerial parts extract from Korean crowberry (Empetrum nigrum var. japonicum), Saudi Journal of Biological Sciences (2015) Available:
DOI: 10.1016/j.sjbs.2015.02.008
Google Scholar
[29]
S.A.O. Santos, P.C.R.O. Pinto, A.J.D. Silvestre, C.P. Neto, Chemical composition and antioxidant activity of phenolic extracts of cork from Quercus suber L., Ind. Crop. Prod. 31 (2010) 521-526.
DOI: 10.1016/j.indcrop.2010.02.001
Google Scholar
[30]
B.M. Popović, D. Štajner, R. Ždero, S. Orlović, Z. Galić, Antioxidant characterization of oak extracts combining spectrophotometric assays and chemometrics, The Scientific World Journal (2013)134656. Available:
DOI: 10.1155/2013/134656
Google Scholar
[31]
J.A. Sanchez-Burgosa, M.V. Ramirez-Maresb, M.M. Larrosac, J.A. Gallegos-Infantea, R.F. Gonzalez-Laredoa, L. Medina-Torresd, N.E. Rocha-Guzmana, Antioxidant, antimicrobial, antitopoisomerase and gastroprotective effect ofherbal infusions from four Quercus species, Ind. Crop. Prod. 42 (2013) 57-62.
DOI: 10.1016/j.indcrop.2012.05.017
Google Scholar
[32]
Y. Cai, Q. Luo, M. Sun, H. Corke, Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer, Life Sci. 74 (2004) 2157-2184.
DOI: 10.1016/j.lfs.2003.09.047
Google Scholar
[33]
N. Saeed, M.R. Khan, M. Shabbir, Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L, Bio. Med. Central. 12 (2012) 221.
DOI: 10.1186/1472-6882-12-221
Google Scholar
[34]
R.A. Khan, M.R. Khan, S. Sahreen, M. Ahmed, Assessment of flavonoids contents and in vitro antioxidant activity of Launaea procumbens, Chem. Cent. J. 6 (2012) 43.
DOI: 10.1186/1752-153x-6-43
Google Scholar
[35]
R. Touati, S.A.O. Santos, S.M. Rochac, K. Belhamel, A.J.D. Silvestre, The potential of cork from Quercus suber L. grown in Algeria as a source of bioactive lipophilic and phenolic compounds, Ind. Crop. Prod. 76 (2015) 936-945.
DOI: 10.1016/j.indcrop.2015.07.074
Google Scholar
[36]
J. Sun, Y.F. Chu, X. Wu, R. H. Liu, Antioxidant and antiproliferative activities of common fruits, J. Agric. Food Chem. 50(25) (2002) 7449-7454.
DOI: 10.1021/jf0207530
Google Scholar
[37]
N. Dolai, I. Karmakar, R.B.S. Kumar, B. Kar, A. Bala, P.K. Haldar, Free radical scavenging activity of Castanopsis indica in mediating hepatoprotective activity of carbon tetrachloride intoxicated rats, Asian Pac. J. Trop. Biomed. 2(1) (2012) S242-S251.
DOI: 10.1016/s2221-1691(12)60168-3
Google Scholar
[38]
F.A.M. Silva, F. Borges, C. Guimarães, J.L.F.C. Lima, C. Matos, S. Reis, Phenolic acids and derivatives: studies on the relationship among structure, radical scavenging activity, and physicochemical parameters, J. Agric. Food Chem. 48(6) (2000) 2122-2126.
DOI: 10.1021/jf9913110
Google Scholar
[39]
E. Bendary, R.R. Francis, H.M.G. Ali, M.I. Sarwat, S. El Hady, Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds, Ann. Agri. Sci. 58(2) (2013) 173-181.
DOI: 10.1016/j.aoas.2013.07.002
Google Scholar
[40]
D.T. Khang, T.N. Dung, A.A. Elzaawely, T.D. Xuan, Phenolic profiles and antioxidant activity of germinated legumes, Foods 5 (2016) 27.
DOI: 10.3390/foods5020027
Google Scholar
[41]
J. Chompoo, A. Upadhyay, M. Fukuta, S. Tawata, Effect of Alpinia zerumbet components on antioxidant and skin diseases-related enzymes, BMC Complement Altern. Med. 12 (2012) 106.
DOI: 10.1186/1472-6882-12-106
Google Scholar
[42]
Q.D. Do, A.E. Angkawijaya, P.L Tran-Nguyen, L.H. Huynh, F.E. Soetaredjo, S. Ismadji, Y.H. Ju, Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatic, J. Food Drug Anal. 22(3) (2014) 296-302.
DOI: 10.1016/j.jfda.2013.11.001
Google Scholar
[43]
E. Bursal, E. Köksal, Evaluation of reducing power and radical scavenging activities of water and ethanol extracts from sumac (Rhus coriaria L.), Food Res. Int. 44(7) (2011) 2217-2221.
DOI: 10.1016/j.foodres.2010.11.001
Google Scholar
[44]
A. Indrianingsih, S. Tachibana, K. Itoh, In vitro evaluation of antioxidant and α-glucosidase inhibitory assay of several tropical and subtropical plants, Procedia Environ. Sci. 28 (2015b) 639-648.
DOI: 10.1016/j.proenv.2015.07.075
Google Scholar
[45]
L. Barros, M.J. Ferreira, B. Queirós, I.C.F.R. Ferreira, P. Baptista, Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities, Food Chem. 103(2) (2007) 413-419.
DOI: 10.1016/j.foodchem.2006.07.038
Google Scholar
[46]
J.C.M. Barreira, I.C.F.R. Ferreira, M.B.P.P. Oliveira, J.A. Pereira, Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit, Food Chem. 107 (2008) 1106-1113.
DOI: 10.1016/j.foodchem.2007.09.030
Google Scholar
[47]
L. Custódio, J. Patarra, F. Alberício, N. da Rosa Neng, J.M.F. Nogueira, A. Romano, Phenolic composition, antioxidant potential and in vitro inhibitory activity of leaves and acorns of Quercus suber on key enzymes relevant for hyperglycemia and Alzheimer's disease, Ind. Crop. Prod. 64 (2015) 45-51.
DOI: 10.1016/j.indcrop.2014.11.001
Google Scholar
[48]
L. Sepúlveda, A. Ascacio, R. Rodríguez-Herrera, A. Aguilera-Carbó, C.N. Aguilar, Ellagic acid: Biological properties and biotechnological development for production processes, Afr. J. Biotechnol. 10(22) (2011) 4518-4523.
DOI: 10.1002/chin.201250260
Google Scholar
[49]
N.L. Chaitra, R.V. Raivishankar, Anti-HIV-1 Activity of Ellagic acid isolated from Terminalia paniculata, Free Rad Antiox. 6(1) (2016) 101-108.
DOI: 10.5530/fra.2016.1.12
Google Scholar
[50]
A. Fernandes, I. Fernandes, L. Cruz, N. Mateus, M. Cabral, V. de Freitas, Antioxidant and bological properties of bioactive phenolic compounds from Quercus suber L, J. Agric. Food Chem. 57(23) (2009) 11154-11160.
DOI: 10.1021/jf902093m
Google Scholar
[51]
R. Niggeweg, A.J. Michael, C. Martin, Engineering plants with increased levels of the antioxidant chlorogenic acid, Nat. Biotechnol. 22(6) (2004) 746-754.
DOI: 10.1038/nbt966
Google Scholar
[52]
A.V. Qualley, J.R. Widhalm, F. Adebesin, C.M. Kish, N. Dudareva, Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants, PNAS. 109(40) (2012) 16383–16388.
DOI: 10.1073/pnas.1211001109
Google Scholar
[53]
J.R. Widhalm, N.A. Dudareva, A familiar ring to it: Biosynthesis of plant Benzoic acids, Molecular Plant. 8(1) (2015) 83-97.
DOI: 10.1016/j.molp.2014.12.001
Google Scholar