Effect of Bergenin on the Kidney of C57BL/6J Mice with High Fat-Diet Induced Oxidative Stress

Article Preview

Abstract:

The present study evaluated the protective effect of bergenin on high fat diet (HFD) induced diabetic mice. C57BL/6J mice were segregated in two groups, one fed standard diet (NC) and the other fed HFD for 16 weeks. Mice were fed continuously with high fat diet for 16 weeks and subjected to intragastric administration of bergenin (10, 20 and 40 mg/kg body weight (BW)), metformin (25 mg/kg BW) 9 to 16 weeks. At the end of the treatment nephritic markers, lipid peroxidation product, antioxidant and histopathological examination were carried out to assess the efficacy of the treatment. HFD fed mice showed increased plasma glucose, insulin, altered nephritic markers, antioxidant and histopathological abnormalities. Oral Treatment with bergenin (40 mg/kg BW) showed near normalized levels of plasma glucose, lipid peroxidation product, antioxidants, improved insulin and reduced kidney damage. The effects of bergenin were comparable with standard drug, metformin. These data suggest that bergenin protect kidney from deleterious effect of glucose.

Info:

* - Corresponding Author

[1] American Diabetes Association, Diagnosis and classification of diabetes mellitus,Diabetes Care. 33 (2010) 62–69.

Google Scholar

[2] D. Koya, M. Haneda, S. Inomata, Y. Suzuki, D. Suzuki, H. Makino, et al., Long-term effect of modification of dietary protein intake on the progression of diabetic nephropathy: A randomised controlled trial, Diabetologia. 52 (2009) 2037-45.

DOI: 10.1007/s00125-009-1467-8

Google Scholar

[3] T. Zelmanovitz , F. Gerchman, A.P. Balthazar, F.C. Thomazelli, J.D. Matos, L.H. Canani, Diabetic nephropathy, Diabetol Metab Syndr. (2009) 1-10.

DOI: 10.1186/1758-5996-1-10

Google Scholar

[4] H.S. Lee, S.K. Ku, Effect of picrorrhiza rhizoma extracts on early diabetic nephropathy in streptozotocin-induced diabetic rats. J Med Food. 11(2008) 294-301.

DOI: 10.1089/jmf.2007.578

Google Scholar

[5] B.H. Havsteen, The biochemistry and medical significance of the flavonoids, Pharm Therap. 96 (2002) 67-202.

Google Scholar

[6] Y.Y. Soong, P.J. Barlow, Antioxidant activity and phenolic of selected fruit seeds, Food Chem. 88 (2004) 411-417.

DOI: 10.1016/j.foodchem.2004.02.003

Google Scholar

[7] V.P. Veerapur, K.R. Prabhakar, B.S. Thippeswamy, P. Bansal, K.K. Srinivasan, M.K. Unnikrishnan, Antidiabetic effect of Ficus racemosa Linn. Stem bark in high-fat diet and low-dose streptozocin- induced type 2 diabetic rats: A mechanistic study, Food Chem. 132 (2012) 186-193.

DOI: 10.1016/j.foodchem.2011.10.052

Google Scholar

[8] H.K. Lim, H.S. Kim, H.S. Choi, S. Oh, J. Choi, Hepatoprotective effects of bergenin, a major constituent of Mallotus japonicus, on carbon tetrachloride-intoxicated rats, J Ethanopharmacol. 72, (2000) 469-474.

DOI: 10.1016/s0378-8741(00)00260-9

Google Scholar

[9] M. Arfan, H. Amin, M. Karamac, A. Kosinska, W. Wiczkowski, R. Amarowick, Antioxidant activity of phenolic fractions of Mallotus philippinensis barks extract, Food Sci. 27 (2009) 109-117.

DOI: 10.17221/1056-cjfs

Google Scholar

[10] R. Srinivasan, M.J.N. Chandrasekar, M.J. Nanjan, B. Suresh, Antioxidant activity of Caesalpinia digyna root, J Ethnopharmacol. 113(2007) 284–91.

DOI: 10.1016/j.jep.2007.06.006

Google Scholar

[11] H.S. Kim, H.K. Lim, M.W. Chang, Y.C. Kim, Antihepatotoxic activity of bergenin, the major constituent of Mallotus japonicus, on carbon tetrachloride-intoxicated hepatocytes. J Ethnopharmacol. 69 (2000) 79–83.

DOI: 10.1016/s0378-8741(99)00137-3

Google Scholar

[12] H.L. Pu, X. Huang, J.H. Zhao, A. Hing, Bergenin is the antiarrhythmic principle of Fluggea virosa. Planta Med. 68 (2002) 372–374.

DOI: 10.1055/s-2002-26758

Google Scholar

[13] S. Piacente, C. Pizza, N. Detommasi, Constituents of Ardisia japonica and their invitro anti-HIVactivity, J Nat Products. 59 (1996) 565–569.

DOI: 10.1021/np960074h

Google Scholar

[14] T. Swarnalakshmi, M.G. Sethuraman, N. Sulochana, R. Arivudainambi, A note on the anti-inflammatory activity of bergenin, Curr Sci. 53(1984) 917.

Google Scholar

[15] R. Kumar, D.K. Patel, S.K. Prasad, D. Laloo, S. Krishnamurthy, S. Hemalatha, Type 2 antidiabetic activity of bergenin from the roots of Caesalpinia digyna Rottler, Fitoterapia. 83 (2012) 395–401.

DOI: 10.1016/j.fitote.2011.12.008

Google Scholar

[16] P. Trinder, Determination of blood glucose using an oxidase peroxidase system with a non carcinogenic chromogen, J Clin Pathol. 22 (1969)158–161.

DOI: 10.1136/jcp.22.2.158

Google Scholar

[17] W. Burgi, M. Briner, N. Franken, A.C.H. Kessler. One step sandwich enzyme immunoassay for insulin using monoclonal antibodies, Clin Biochem. 213, (1998) 11–314.

DOI: 10.1016/s0009-9120(88)80087-0

Google Scholar

[18] J.K. Fawcett, J.E. Scott, A rapid and precise method for the determination of urea, J Clin Path. 3 (1960)156–159.

Google Scholar

[19] W.T. Caraway, Determination of uric acid in serum by carbonate method, Am J Clin Path. 25 (1955) 840–845.

DOI: 10.1093/ajcp/25.7_ts.0840

Google Scholar

[20] P. Kakkar, B. Das, P.N. Viswanathan, A modified spectrophotometric assay of superoxide dismutase, Ind J Biochem Biophys. 21(1984)130–132.

Google Scholar

[21] A.K. Sinha, Colorimetric assay of catalase, Anal Biochem. 47 (1972) 389–394.

Google Scholar

[22] J.T. Rotruck, A.L. Pope, H.E. Ganther, A.B. Swanson, D.G. Hafeman, W.G. Hoekstra. Selenium: biochemical role as a component of glutathione peroxidise, Science. 179 (1973) 588–590.

DOI: 10.1126/science.179.4073.588

Google Scholar

[23] G.L. Ellman, Tissue sulfhydryl groups, Arch Biochem Biophys. 82 (1959)70–77.

Google Scholar

[24] C.A. Kuether and J.H. Roe, The determination of ascorbic acid in whole blood and urine through the 2, 4-dinitrophenylhydrazine derivative of dehydroascorbic acid, J Biol Chem. 11(1943) 145–164.

DOI: 10.1016/s0021-9258(18)72395-8

Google Scholar

[25] H. Baker, O. Frank, B. DeAngelis, S. Feingold, Plasma tocopherol in man at various times after ingesting free or acetylated tocopherol, Nutr Res. 21 (1980) 531–536.

Google Scholar

[26] W.G. Niehaus, B. Samuelsson. Formation of malondialdehyde from phospholipid arachidonate during microsomal lipid peroxidation, Eur J Biochem. 6 (1968)126–130.

DOI: 10.1111/j.1432-1033.1968.tb00428.x

Google Scholar

[27] Z.Y. Jiang, J.V. Hunt, S.P. Wolff, Ferrous ion oxidation in the presence of xylenol orange for the detection of lipid hydroperoxides in low density lipoprotein, Anal Biochem. 202 (1992) 384–389.

DOI: 10.1016/0003-2697(92)90122-n

Google Scholar

[28] G. Reaven, F. Abbasi, T. McLaughlin, Obesity, insulin resistance, and cardiovascular disease, Recent Prog Horm Res. 59 (2004) 207–223.

Google Scholar

[29] A. Sundaresan, R. Harini and K.V. Pugalendi, Ursolic acid and rosiglitazone combination alleviates metabolic syndrome in high fat diet fed C57BL/6J mice, Gen. Physiol. Biophys. 31 (2012) 323–333.

DOI: 10.4149/gpb_2012_037

Google Scholar

[30] R. Agarwal, N. Vasavada, N.G. Sachs, S. Chase, Oxidative stress and renal injury with intravenous iron in patients with chronic kidney disease, Kidney Int. 65 (2004) 2279–2289.

DOI: 10.1111/j.1523-1755.2004.00648.x

Google Scholar

[31] S. Kume, T. Uzu, S. Araki, T. Sugimoto, K. Isshiki, M. Kanasaki, Role of altered renal lipid metabolism in the development of renal injury induced by a high-fat diet, J Am Soc Nephrol. 18 (2007) 2715–2723.

DOI: 10.1681/asn.2007010089

Google Scholar

[32] M.L. Bournoville, M. Conti, R. Bazin, O. Michel, J. Bariety, J. Chevalier, Oxidative stress occurs in absence of hyperglycaemia and inflammation in the onset of kidney lesions in normotensive obese rats, Nephrol Dial Transpl. 15(1999) 467–476.

DOI: 10.1093/ndt/15.4.467

Google Scholar

[33] M.O. Sim, J.R. Ham, H.I. Lee, K.I. Seo, M.K. Lee, Long-term supplementation of umbelliferone and 4-methylumbelliferone alleviates high-fat diet induced hypertriglyceridemia and hyperglycemia in mice, Chem-Biol Inter. 216 (2014) 9–16.

DOI: 10.1016/j.cbi.2014.03.003

Google Scholar

[34] K. Datta, S. Sinha, P. Chattopadhyay, Reactive oxygen species in health and diseases, Natl Med J India, 13(2000) 304–10.

Google Scholar

[35] K. Arai, S. Maguchi, S. Fujii, H. Ishibashi, K. Oikawa, N. Taniguchi, Glycation and inactivation of human Cu–Zn-superoxide dismutase, J Biol Chem. 262 (1987) 16969–72.

DOI: 10.1016/s0021-9258(18)45479-8

Google Scholar

[36] N. Nazir, S. Koul, M.A. Qurishi, M.H. Najar, M.I. Zargar, Evaluation of antioxidant and antimicrobial activities of Bergenin and its derivatives obtained by chemoenzymatic synthesis, European J Med Chem. 46 (2011) 2415-2420.

DOI: 10.1016/j.ejmech.2011.03.025

Google Scholar

[37] E.F. Kern, P. Erhard, W. Sun, S. Genuth, M.F. Weiss, Early urinary markers of diabetic kidney disease: A nested case-control study from the Diabetes Control and Complications Trial (DCCT), Am J Kidney Dis. 55 (2010) 824-34.

DOI: 10.1053/j.ajkd.2009.11.009

Google Scholar

[38] V.C. Myers, M.S. Fine, Comparative distribution of urea, creatinine, uric acid and sugar in the blood and spinal fluid, Am J Med Sci, 76 (1918) 239–244.

DOI: 10.1016/s0021-9258(18)86355-4

Google Scholar

[39] T. Yokozawa, T. Nakagawa, T. Oya, T. Okubo, L.R. Juneja, Green tea polyphenols and dietary fibre protect against kidney damage in rats with diabetic nephropathy, J Pharm Pharmacol. 57 (2005) 773-80.

DOI: 10.1211/0022357056154

Google Scholar